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a b s t r a c t

By employing the simple but effective principle ‘survival of the fittest’ on which Darwin’s Evolution Theory
is based, a novel strategy for selecting an optimal combination of key wavelengths of multi-component
spectral data, named competitive adaptive reweighted sampling (CARS), is developed. Key wavelengths
are defined as the wavelengths with large absolute coefficients in a multivariate linear regression model,
such as partial least squares (PLS). In the present work, the absolute values of regression coefficients of
PLS model are used as an index for evaluating the importance of each wavelength. Then, based on the
importance level of each wavelength, CARS sequentially selects N subsets of wavelengths from N Monte
Carlo (MC) sampling runs in an iterative and competitive manner. In each sampling run, a fixed ratio (e.g.
80%) of samples is first randomly selected to establish a calibration model. Next, based on the regression
coefficients, a two-step procedure including exponentially decreasing function (EDF) based enforced
wavelength selection and adaptive reweighted sampling (ARS) based competitive wavelength selection
is adopted to select the key wavelengths. Finally, cross validation (CV) is applied to choose the subset
with the lowest root mean square error of CV (RMSECV). The performance of the proposed procedure
is evaluated using one simulated dataset together with one near infrared dataset of two properties. The
results reveal an outstanding characteristic of CARS that it can usually locate an optimal combination of
some key wavelengths which are interpretable to the chemical property of interest. Additionally, our study
shows that better prediction is obtained by CARS when compared to full spectrum PLS modeling, Monte
Carlo uninformative variable elimination (MC-UVE) and moving window partial least squares regression
(MWPLSR).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate calibration models have been gaining extensive
applications in the analysis of multi-component spectroscopic data
due to their potential to extract chemically meaningful informa-
tion, e.g. structure-related wavelengths, from the over-determined
systems. But the measured spectral data on the modern spectro-
scopic instrument, such as ultraviolet or near infrared instruments,
are usually of high colinearity, which is the commonplace faced
by analytical chemists. To address this problem, a variety of tech-
niques based on latent variables (LVs) have been proposed, such as
principal component regression (PCR) [1,2] and partial least squares
(PLS) [3,4]. Typically, the establishment of a calibration model usu-
ally includes all the measured wavelengths. It is obvious that such
a full spectrum model is sure to contain much redundant informa-
tion, which will of course have negative influence on the prediction
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ability of the developed model. In addition, from the point of
view of model interpretation, it is really difficult for analytical
chemists and/or chemometrists to determine which wavelengths
or combinations are responsible for the property of interest. It
has been demonstrated that, both experimentally and theoretically,
improvement of the performance of the calibration model can be
achieved by using the selected informative wavelengths not the full
spectrum.

Generally, the selection criteria for wavelength can be catego-
rized into two groups [5]. One is based on information content of the
wavelength, such as signal-to-noise ratio. The other is based on the
statistics related to the model’s performance, e.g. RMSECV. Gem-
perline reviewed the work in the area of wavelength selection [6].
From an optimization perspective, the wavelength selection can be
viewed as an optimizing process which maximizes the prediction
performance of the calibration model. Thus, it is natural to employ
the optimization algorithm, which tries to seek a good combina-
tion of wavelengths, to implement wavelength selection using the
criteria mentioned above as the objection function. Genetic algo-
rithm (GA) [5,7–15], simplex optimization [16], branch and bound
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combination optimization [17,18], simulated annealing (SA) [16,19],
and ant colony optimization (ACO) [20] have been applied to select
the optimal subset of wavelengths. All these studies suggest that
better prediction can be obtained using the selected wavelengths
rather than the full spectrum, which is an indication of the impor-
tance of wavelength selection. But one should know that this kind
of methods based on optimization methods is usually computation-
ally intensive and sensible to the initialized solution.

Besides, a series of more direct methods have been proposed to
conduct wavelength selection, such as iterative partial least squares
(iPLS) [21], uninformative variable elimination (UVE) [22], Monte
Carlo based UVE (MC-UVE) [23,24], moving window partial least
squares (MWPLS) [25], successive projection [26,27], Bayesian lin-
ear regression (BLR) [28] and so on.

In essence, the developed wavelength-reduced model by wave-
length selection is much more interpretable for the sake of some
scientific insight into the relationship between digitalized spectra
and the property to be investigated, e.g. concentration. The under-
lying assumption behind wavelength selection may be that the
regression model will be biased from the ‘true’ one due to the
distortion caused by the wavelengths which are irrelevant with
respect to the property under investigation. Based on the reports
[5–25,28–33], one can conclude that wavelength selection is a
key factor for constructing a reliable and interpretable calibration
model with good prediction accuracy.

In this study, we present a new strategy, termed competitive
adaptive reweighted sampling (CARS), which has the potential to
select an optimal combination of the wavelengths existing in the
full spectrum coupled with partial least squares regression by using
the simple but effective principle ‘survival of the fittest’ on which
Darwin’s Evolution Theory is based. With applications to one sim-
ulated dataset and one real NIR spectral dataset of two properties,
CARS proves to be a promising procedure to conduct wavelength
selection for building a high performance calibration model. Addi-
tionally, it should be pointed out that CARS is not designed for
spectral data only. It is a general strategy and thus can be used
for variable selection of other kinds of data, such as genomic, pro-
teomic and metabolomic data. Moreover, it can also be coupled with
discriminant analysis for biomarker discovery.

2. Theory and algorithms

2.1. Notation

The data matrix X contains m samples in rows and p variables in
columns. Vector y with order m × 1 denotes the measured property
of interest. The superscript T denotes vector or matrix transpose.
When modeling, both X and y are mean-centered.

Suppose the number of MC sampling runs of CARS is set to N.
With this setting, CARS will sequentially select N subsets of wave-
lengths. Briefly speaking, in each sampling run, CARS works in four
successive steps: (1) Monte Carlo for model sampling. (2) Employ
EDF to perform enforced wavelength selection. (3) Adopt ARS to
realize a competitive selection of wavelengths and (4) cross val-
idation [34–37] is utilized to evaluate the subset. CARS will be
discussed in great detail in the following sections.

2.2. Monte Carlo for model sampling

Like uninformative variable elimination [22,23], in each sam-
pling run of CARS, a PLS model is built using the randomly selected
samples (usually 80–90% of the calibration set) not all the sam-
ples in the calibration set. From the point of view of sampling, this
process can be regarded as sampling in the model space combined
with Monte Carlo strategy. We are intended to select the variables

which are of high adaptability regardless of the variation of training
samples.

2.3. PLS and weights of variables

PLS is a widely used procedure for modeling the linear relation-
ship between X and y based on latent variables (LVs). Suppose that
the scores matrix is denoted by T, which is a linear combination of
X with W as combination coefficients [38], and c is the regression
coefficient vector of y against T by least squares. Thus we have the
following formula:

T = XW (1)

y = Tc + e = XWc + e = Xb + e (2)

where e is the prediction error and b = Wc = [b1, b2, . . . bp]T is the
p-dimensional coefficient vector. The absolute value of the ith
element in b, denoted |bi| (1 ≤ i ≤ p) reflects the ith wavelength’s
contribution to y. Thus, it is natural to say that the larger |bi| is, the
more important the ith variable is. For evaluating the importance
of each wavelength, we define a normalized weight as:

wi = |bi|∑p
i=1|bi|

, i = 1, 2, 3, . . . , p (3)

Additional attention should be paid to that the weights of the
eliminated wavelengths by CARS are set to zero manually so that
the weight vector w is always p-dimensional.

2.4. Exponentially decreasing function

Suppose the full spectrum contains p wavelengths and N sam-
pling runs are performed in CARS. As mentioned before, the
wavelength selection in CARS consists of two steps. In the first step,
EDF is utilized to remove the wavelengths which are of relatively
small absolute regression coefficients by force. In the ith sampling
run, the ratio of wavelengths to be kept is computed using an EDF
defined as:

ri = ae−ki (4)

where a and k are two constants determined by the following two
conditions: (I) in the first sampling run, all the p wavelengths are
taken for modeling which means that r1 = 1, (II) in the Nth sampling
run, only two wavelengths are reserved such that we have rN = 2/p.
With the two conditions, a and k can be calculated as:

a =
(

p

2

)1/(N−1)
(5)

k = ln(p/2)
N − 1

(6)

where ln denotes the natural logarithm.
Fig. 1 illustrates an example of EDF. As can be seen clearly, the

process of wavelength reduction can be roughly divided into two
stages. In the first stage, wavelengths are eliminated rapidly which
performs a ‘fast selection’, whereas in the second stage, wave-
lengths are reduced in a very gentle manner, which is instead called
a ‘refined selection’ stage in our study. Therefore, wavelengths of
little or no information in a full spectrum can be removed in a step-
wise and efficient way because of the advantage of EDF. That is the
reason why we choose EDF. Its advantage will be demonstrated by
our experiments in the following sections.

2.5. Adaptive reweighted sampling

Following EDF-based enforced wavelength reduction, adaptive
reweighted sampling (ARS) is employed in CARS to further elim-
inate wavelengths in a competitive way. This step mimics the
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Fig. 1. Graphical illustration of the exponentially decreasing function. In the first
stage, the number of the wavelengths is reduced fast while in the second stage, it
decreases very slowly which realizes a refined selection.

‘survival of the fittest’ principle which is the basis of Darwin’s Evo-
lution Theory. Fig. 2 illustrates the meaning of adaptive reweighted
sampling. Assume that we have five weighted variables which will
be subjected to five random weighted sampling experiments with
replacement. In Case 1, each variable has an equal weight 0.20 indi-
cating that they can be sampled with an equal probability. The ideal
result is that each variable is sampled one time. Case 2 shows vari-
ables 1 and 2 have the largest weight 0.30 while variables 4 and 5
are of the smallest weights 0.10. Thus, variables 1 and 2 are sampled
twice, while variable 3 once. Variables 4 and 5 are not sampled by
ARS and hence eliminated. Similar to Case 2, Case 3 demonstrates
that only variables 1 and 3 are sampled in the five weighted sam-
pling experiments due to their dominant weights, while variables
2, 4 and 5 are much less competitive and hence out of play because
of their relatively weak weights.

2.6. General description of CARS

Fig. 3 shows the scheme of CARS algorithm. It is outlined clearly
in Fig. 3 that CARS selects N subsets of variables by N sampling
runs in an iterative manner and finally chooses the subset with
the lowest RMSECV value as the optimal subset. In each sam-
pling run, CARS works in four successive steps including Monte
Carlo model sampling, enforced wavelength reduction by EDF,
competitive wavelength reduction by ARS and RMSECV calcula-
tion for each subset. Of these, EDF-based wavelength reduction in
combination with competitive wavelength reduction by ARS is a
two-step procedure for wavelength selection. In summary, CARS
employs a simple but effective principle ‘survival of the fittest’
and realizes to some extent the selection of an optimal subset
of wavelength. In the following sections, the characteristics and

Fig. 2. Illustration of adaptive reweighted sampling technique using five variables
in three cases as an example. The variables with larger weights will be selected with
higher frequency.

Fig. 3. Flow chart of CARS algorithm. When i = 1, all the variables are included to
build a calibration model. Thus in this step, Vsel old contains all the original variables.
After N sampling runs, CARS obtains N subsets of variables and finally choose the
subset with the lowest RMSECV value as the optimal one.

behaviors of CARS will be discussed in detail using one simulated
dataset and one real world benchmark NIR dataset with two prop-
erties.

3. Data description

3.1. Simulated data set

This dataset, called SIMUIN, is simulated in the same way as in
Ref. [22] which contains exactly five latent variables. The yielded
relative eigenvalues by principal component analysis on the cen-
tered data are (%) 25.34, 23.02, 22.59, 21.49 and 7.57. SIMUIN
consists of 25 samples in rows and 200 wavelengths in columns.
The first 100 wavelengths are linearly related with y but the last 100
columns contain random numbers from 0 to 1, standing for unin-
formative wavelengths. The added noises are normally distributed
in the range from 0 to 0.005.

3.2. Corn data set

This benchmark data set [39] consists of NIR spectra of 80 corn
samples, measured on different types of NIR spectrometer. Each
spectrum contains 700 data points measured in the wavelength
range 2498–1100 nm at 2 nm intervals. In the present study, two
sub-datasets are employed to investigate the performance of CARS.
The first dataset uses the NIR spectra of 80 corn samples measured
on m5 instrument as X and the moisture value as dependent vari-
able y. For the second dataset, we use the NIR spectra of 80 corn
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Fig. 4. The original NIR spectra of corn moisture (plot a) and corn protein data (plot
b).

samples collected on mp5 instrument as X and the protein content
as the response variable y. The original spectra of the two data are
shown in plots a and b of Fig. 4, respectively.

4. Results and discussion

4.1. Influence of number of MC sampling runs

In order to investigate the influence of the number of Monte
Carlo sampling runs on CARS’ performance, we have considered
the following four cases: the number is set to 50, 100, 200 and 500.
For each case and each of the three datasets, 50 replicate running
of CARS is executed and RMSECV values are recorded. The resulted
statistical box-plots are shown in Fig. 5. It can be found that the
number of Monte Carlo sampling runs does not have significant
influence on the performance of CARS. In the following sections, it
is set to 100 as default.

Fig. 5. The box-plots for each dataset with the number of Monte Carlo sampling
runs of CARS set to 50, 100, 200 and 500, respectively. (a) Simulated dataset. (b)
Corn moisture data. (c) Corn protein data.

Table 1
The results on the simulated dataset.

Methods RMSECV nLVsa nVARa nUNVa

PLSb 1.101 7 200 –
PLSc 0.0200 5 100 –
MC-UVE-PLS 0.0209 ± 0.0006d 6 ± 1d 46 ± 20d 1 (235)
CARS-PLS 0.0139 ± 0.0023d 6 ± 1d 16 ± 4d 1 (1)

a nUNV stands for the number of selected different uninformative variables. The
number in the bracket denotes the total times. nLVs and nVAR denotes the number
of latent variables and selected variables, respectively.

b Results using full spectrum with 200 variables by PLS.
c Results using only the 100 simulated informative variables by PLS.
d Statistical results with the form mean value ± standard deviation from 500 repli-

cate simulations.

4.2. Simulated data

This dataset is intended for investigating the ability for CARS
to select key variables by eliminating the artificial noisy variables.
10-fold cross validation is used in this study to explore its predic-
tive performance. Also, we compared CARS to MC-UVE, aiming only
at demonstrating that CARS is indeed an alternative and efficient
procedure for uninformative variable elimination not that which
method is better.

This data is first autoscaled for each variable to have zero mean
and unit variance before modeling. By 10-fold cross validation, the
optimal number of latent variables of PLS model is 7. For MC-UVE,
the number of Monte Carlo iterations is set to 500, and in each
iteration 80% samples from this data are randomly chosen to build
a PLS calibration model using seven latent variables. The regres-
sion coefficients for each variable are recorded in a vector. After
500 iterations, a coefficient matrix is obtained based on which
a reliability index can be calculated for each variable. Then, all
the variables are ranked in accordance with their reliability index.
As known, cross validation is an effective and widely used tech-
nique for model/variable selection. Thus in our study, the number
of variables to be selected is determined by 10-fold cross validation
technique not by setting a cut-off value as done in Refs. [22,23]. Also
the maximal number of selected variables is set to 100. With these
settings, we run MC-UVE to eliminate the uninformative variables
while simultaneously estimate its predictive performance. Further,
it is noteworthy that only one running of MC-UVE is not sufficient
due to the variation caused by Monte Carlo strategy. One remedy
for this problem is to repeat it for many times. Therefore, MC-UVE
is repeated 500 times in this case, which can help to get a deeper
understanding of its behavior. For CARS, the number of MC sam-
pling runs is set to 100. CARS is also rerun for 500 times and the
results are recorded for further analysis.

Table 1 shows the results of MC-UVE and CARS on SIMUIN data,
together with the results based on the full spectrum and only the
informative variables. The RMSECV value using all the 200 hundred
variables is 1.1010. By contrast, not only the RMSECV (=0.0200) but
also the number of latent variables is reduced significantly when
the model only includes the subset of the 100 informative variables.
This phenomenon experimentally proves the necessity to perform
variable selection or removing the uninformative variables before
building a calibration model.

MC-UVE and CARS are applied in order to demonstrate whether
better prediction can be obtained by selecting the reliable vari-
able (MC-UVE) or key variables (CARS). From Table 1, one can find
that CARS got much better prediction results, i.e. 0.0139 compared
to 0.0209, but with a larger standard deviation (0.0023 compared
to 0.0006), which indicates that the stability of CARS still needs
improving although it can pick out variables leading to a model with
good generalization performance. Interestingly, the number of the
selected variables by CARS is relatively small (16 ± 4), which is one
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Fig. 6. The changing trend of the number of sampled variables (plot a), 10-fold
RMSECV values (plot b) and regression coefficients of each variables (plot c) with
the increasing of sampling runs. The line (marked by asterisk) denotes the optimal
point where 10-fold RMSECV values achieve the lowest.

reason why we call them key variables. Moreover, only one uninfor-
mative variable is selected one time by CARS, which proves that it
has the potential to eliminate uninformative variables as MC-UVE
does.

Fig. 6 shows the changing trend of the number of sampled vari-
ables (plot a), 10-fold RMSECV values (plot b) and the regression
coefficient path of each variable (plot c) with the increasing of sam-
pling runs from one CARS running. As expected, the number of
sampled variables decreases fast at the first stage of EDF and then
very slowly at the second stage of EDF, which demonstrated that the
proposed two phase selection, i.e. fast selection and refined selec-
tion, are indeed realized in CARS. The RMSECV values first descend
quickly from sampling runs 1–10 which should be ascribed to the
elimination of uninformative variables, then changes in a gentle
way from sampling runs 20–60 corresponding to the phase that
the sampled variables do not change obviously, and finally increase
fast because of the loss of information caused by eliminating some
key variables from the optimal subset (denoted by asterisk).

Also noteworthy is the coefficient path of each variable shown
in plot c. Each line in plot c records the coefficients at different sam-
pling runs for each variable. Thus, a subset of variables together with
the regression coefficients can be extracted from each sampling run.
The best subset with the lowest RMSECV value is marked by the ver-
tical line denoted by asterisk. More interestingly, the RMSECV value
jumps up to a higher stage at the sampling point (denoted dot line:
L1), because the coefficient of one variable (denoted by P1) drops
to zero just at the same time. The dot line marked by L2 is also the
case when the coefficient of another variable denoted by P2 drops
to zero. Such observations demonstrate the existence of key vari-
ables without which the model’s performance would be reduced
dramatically. That is why they are called key variables.

In general, this simulation study indicates that CARS is a promis-
ing method for variable selection. Wavelength selection for NIR
spectral data will be discussed with great detail in the following.

Fig. 7. As illustrated, ˛1 denotes the angle between X1 and y. ˛2 denotes the angle
between X2 and y. ˇ denotes the angle between y and its projection on the space
spanned by X1 and X2. ˇ is very small. The condition ˛2 � ˇ and ˛2 � ˇ holds in this
case.

4.3. Corn moisture data

This NIR data is employed to specially address the situation that
much better prediction results can only be obtained by combination
of some variables, although each single variable is of relatively low
correlation coefficient with y. To search such a combination is an
N-P hard problem and thus computationally infeasible.

Fig. 7 shows such a case. Both x1 and x2 are lowly correlated with
y. But y is so close to the subspace spanned by x1 and x2. The variable
selection methods proposed by statisticians, such as forward stage-
wise selection [40], Lasso [41,42] and least angle regression [43],
pick the most correlated variable with y at the first step in a greedy
manner, which may cause the problem that some good combina-
tion might be missed. But in spectral data analysis, what interests
analytical chemists is not the most correlated wavelengths but the
chemically meaningful band or combinations of several bands.

In addition, a brief introduction of MWPLS is given for further
proceeding. MWPLS is a wavelength interval selection procedure
for multi-component spectral analysis. It establishes a PLS calibra-
tion model for each window (a continuous wavelength band) with
a given number of latent variables. Then by moving the window
on the whole measured wavelength region and changing the num-
ber of latent variables, a series of PLS models together with sums
of squared residues (SSR) are calculated. Finally, the SSR is plotted
versus the position of the moving window. Based on the obtained
SSR plot, the wavelength interval with small SSR and fewer LVs are
selected to build the final calibration model.

Fig. 8 depicts the wavelengths selected by UVE (plot a), MWPLS
(plot b) and CARS (plot c), respectively. From plot a, one can see
that two chemically meaningful wavelength bands 1894–1922 nm
(Band 1) and 2098–2122 nm (Band 2), which are corresponding to
the water absorption [12] and the combination of O–H bond [25],
are selected by UVE. By contrast, the region around 1410 nm due
to the first tone of O–H stretching mode leads to the minimal root
mean squared errors of calibration (RMSEC) by MWPLS, while Band
1 and Band 2 are missed. When CARS is applied, only two wave-
lengths, i.e. 1908 and 2108 nm are picked out. It is noteworthy that
the wavelength 1908 nm just belongs to Band 1 while 2108 nm to
Band 2.

Table 2 shows the results of different methods or wavelength
regions. The RMSECV values using Band 1 and Band 2 are 0.2394
(Q2 = 0.5988, four latent variables) and 0.2747 (Q2 = 0.4719, four
latent variables), respectively. But it dramatically decreases to
0.0058 (Q2 = 0.9998, four latent variables) when modeling by PLS
using the combination of Band 1 and Band 2. This is one typical real
world case as illustrated in Fig. 7. This phenomenon is an indication
that combination of 1908 and 2108 nm has the most interpretability
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Fig. 8. Comparison of selected wavelengths by MC-UVE, MWPLS and CARS. The
window size of MWPLS is fixed at 15. The iteration number of MC-UVE is 500 and
the number of sampling runs of CARS is 500.

for water content, from the point of view of either RMSECV or band
assignment to chemical bond. As known, MWPLS is a procedure
which takes a series of size-changing moving windows to identify
and select a local wavelength band or several separate local bands
in terms of the residuals and the number of latent variables. Thus
it can only work well if the meaningful wavelength band exists in
a narrow region. But for this case, Band 1 and Band 2 are so far
away from each other that their combination cannot be detected
by MWPLS. The results prove that MWPLS cannot deal with this
situation well.

As mentioned before, both MC-UVE and CARS adopt Monte Carlo
strategy to perform wavelength selection. Therefore, it is neces-
sary to run the programmes many times to obtain statistically
stable results. In our study, we run MC-UVE and CARS programmes
500 times, respectively. Both the mean and standard deviation are
given in Table 2. The results demonstrate that better prediction is
obtained by CARS combined with PLS. Moreover, the number of
both latent variables and the selected wavelengths are significantly
lower, which may be seen as a proof for Occam Razor Theory [44,45].
The reason why better prediction can be achieved using fewer
wavelengths may be that wavelengths are heavily collinear and

Table 2
The results on corn moisture data.

Methods RMSECV nLVs nVAR

PLSa 0.0229 10 700
PLSb 0.2394 4 15
PLSc 0.2747 4 13
PLSd 0.0058 4 28
MC-UVE-PLS 0.0032 ± 0.0004 10 ± 0 55 ± 6
MWPLSe 0.0383 10 119
CARS-PLS 0.0006 ± 0.0008 3 ± 2 3 ± 3

a Results using full spectrum in the range 1100–2498 nm.
b Results using the range 1894–1922 nm (Band 1, in Fig. 7).
c Results using the range 2098–2122 nm (Band 2, in Fig. 7).
d Results using the combination of 1894–1922 and 2098–2122 nm (Band 1 + Band

2, in Fig. 7).
e Results from the combination of four regions 1378–1438, 1558–1598, 1828–1868

and 1988–2078 nm.

Fig. 9. Plots a and b show the changing of the number of sampled wavelengths
and 10-fold RMSECV values. Plot c records the regression coefficient path of each
wavelength. The vertical asterisk line denotes the optimal point where 10-fold CV
values achieve the lowest.

hence the model’s variance can be reduced with fewer wavelengths.
More interestingly, for each run of CARS, both the wavelength 1908
and 2108 nm are selected. Therefore, for this data, one can treat
1908 and 2108 nm, of very large absolute regression coefficients in
calibration model, as the key wavelengths in terms of the selection
of CARS.

Fig. 9c shows the regression coefficient path of each wavelength
from one execution of CARS with the number of sampling runs set
to 100. It can be seen in the first sampling run, that the absolute
value of regression coefficient of each wavelength is very small.
But with the number of sampling runs increased, the coefficients
of some wavelengths get larger and larger while others become
smaller and smaller. Specially, the coefficients even drop to zero if
the corresponding wavelengths are eliminated by CARS because
of their incompetence. Thus, the larger the absolute coefficient
is, the more probable the corresponding wavelength can survive.
This selection mechanism in CARS is somewhat like ‘survival of
the fittest’ in Darwin’s Evolution Theory. Each wavelength can be
treated as an individual, and all the other wavelengths are naturally
seen as its ‘environment’. Based on this, CARS algorithm realizes
the process of selecting the fittest individual by utilizing adaptive
reweighted sampling technique. As Fig. 9c shows, the coefficients
of wavelength 1908 and 2108 nm grow up first slowly, then quickly
and finally reach the maximal absolute values above 100 (multiple
runs of CARS lead to similar results, data not shown). These two
wavelengths thus can be considered to be key wavelengths for this
data. The optimal subset chosen by CARS can be extracted from the
position denoted by the vertical asterisk line corresponding to the
minimal 10-fold RMSECV value.

Further, we also statistically compute the selected frequency of
each wavelength by running CARS 500 times. The result is shown in
Fig. 10a. From Fig. 10a, one can find that the wavelengths 1908 and
2108 nm are not selected by chance because the frequencies of both
are selected 500, which further prove that these two wavelengths
are key to the calibration model. Generally, CARS can select an opti-



Author's personal copy

H. Li et al. / Analytica Chimica Acta 648 (2009) 77–84 83

Fig. 10. The selected frequency of each wavelength by running CARS 500 times of
corn moisture data (plot a) and corn protein data (plot b).

mal combination of chemically meaningful wavelengths that can
lead to calibration model with better prediction ability.

4.4. Corn protein data

Fig. 11 shows the wavelength selection results obtained by MC-
UVE, MWPLS and CARS. There exist common wavelength band by
MC-UVE and MWPLS, such as the regions around 1202, 1760, 1974
and 2180 nm. Also great difference exists between these two meth-
ods, e.g. the bands around 1800, 1910, 2200 and 2400 nm. The fact
that selected informative bands are distributed in a wide range

Fig. 11. Comparison of selected wavelengths by MC-UVE, MWPLS and CARS. The
window size of MWPLS is set 15. The iteration number of MC-UVE and the number
of sampling runs of CARS are both set to 500.

Table 3
The results on corn protein data.

Methods RMSECV nLVs nVAR

PLS 0.1500 10 700
MC-UVE-PLSa 0.1214 ± 0.0005 8 ± 1 175 ± 12
MWPLSb 0.1325 9 106
CARS-PLSa 0.1067 ± 0.0033 8 ± 1 19 ± 5

a The mean and standard deviation are calculated from the results of 500 runs of
MC-UVE and CARS, respectively.

b The chosen wavelength bands by MWPLS here are the combination of
1178–1208, 1658–1698, 1718–1778, 1968–1998, 2048–2068 and 2158–2178 nm.

is implicitly in agreement with the complex structure character-
istics of protein, such as different vibration modes (stretching or
bending) of C–H, O–H and N–H bond, the complicated microenvi-
ronment of C–H, O–H and N–H bond, and the interaction of them.
Interestingly, some of the selected wavelengths by CARS are con-
sistent with those by MC-UVE (1202, 1920, 1974 nm, etc.), others
are consistent with those by MWPLS (1202, 1974, 2062, 2168 nm,
etc.). Besides, the selected wavelength 2454 nm is unique to CARS.
So, the performances of the three methods are sure to be different
due to the difference of selected wavelengths. Table 3 presents the
results of them together with that of full spectrum PLS. It is obvi-
ous that the best prediction in terms of RMSECV, are obtained by
CARS. By comparison, CARS has a larger standard deviation than
MC-UVE (0.0033 versus 0.0005), which means that the stability of
CARS needs improving. One significant advantage is that the mean
number of selected wavelengths by CARS is 19 with a standard
deviation 5, which is much smaller than those of other methods.
This phenomenon conveys that better prediction ability can be
achieved with fewer wavelengths. Thus one can conclude that it is
very necessary to first perform wavelength selection before build-
ing a calibration model. Moreover, it is also feasible to choose only
the key wavelengths not a local continuous band or combination of
several continuous bands for modeling because the severe collinear
wavelengths can reduce the stability of calibration models. Occam’s
Razor Theory may account for this [44,45].

In order to investigate the stability behavior of CARS, we sta-
tistically calculate the frequency of each wavelength by running
CARS 500 times. The result is shown in Fig. 10b. It can be found
that only a small part of the wavelengths can be selected by CARS
and the selected wavelengths are mainly distributed in six regions
denoted by 1, 2, 2, 4, 5 and 6, respectively. This observation may
be an indication that the wavelength in these six regions should be
jointly meaningful to correlate protein content with the NIR spec-
tra. Although it is hard to accurately assign the selected band to
the chemical bond, the wide range covered by the selected wave-
lengths, can be a proof of the highly complexity of protein structure.
Additionally, one should pay attention to the wavelengths with
extremely high frequency, such as 2062, 2104, 2166, 2400 nm, etc.
These wavelengths can be naturally considered to be key wave-
lengths. Moreover, one run of CARS can usually select a subset
containing the wavelengths from the six regions. This may be a
potential advantage of CARS.

It is also interesting to analyze the regression coefficient path of
each wavelength as shown in Fig. 12c. As mentioned before, each
line reflects the changing of coefficient of one wavelength. During
CARS, some important wavelengths are retained while other incom-
petent ones are eliminated. The critical point denoted by asterisk
line indicates the optimal subset with the lowest RMSECV. After this
point, RMSECV values begin to increase because of the removing of
some key wavelengths. For instance, RMSECV value rises up to a
much higher level at the time denoted by dot line L1 because one
wavelength (denoted by P1) is eliminated. The removal of another
key wavelength (denoted by P2) also results in the sharp rising of
RMSECV value (L2).
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Fig. 12. Plots a–c, respectively, depict the changing of the number of sampled
wavelengths, 10-fold RMSECV values and the regression coefficient path of each
wavelength. The vertical asterisk line denotes the optimal point where 10-fold
RMSECV values achieve the lowest.

5. Conclusions

This paper presents a new method for key wavelength selection
using competitive adaptive reweighted sampling technique cou-
pled with PLS. Based on the importance level of each wavelength,
CARS sequentially selects N subsets of wavelengths from N sam-
pling run. In each sampling run, the number of wavelengths to
be selected by CARS is controlled by the proposed exponentially
decreasing function and further by adaptive reweighted sampling.
This sampling process is somewhat similar to the ‘survival of the
fittest’ principle in Darwin’s Evolution Theory. In an efficient and
competitive way, CARS finally selects a combination of key wave-
lengths which is of great competence. With applications to one
simulated dataset and one real NIR spectral dataset of two prop-
erties, it is demonstrated that CARS is a promising procedure to
eliminate the uninformative variables and/or conduct wavelength
selection for building a high performance calibration model. Our
results indicate that wavelength selection is really necessary and
better prediction can be obtained using a few chemically mean-
ingful key wavelengths not a continuous band or combination of
several continuous bands because the high collinear wavelengths
may reduce the stability of the calibration model.

Although wavelength selection is performed by CARS coupled
with PLS in this work, it should be pointed out that it can also be
extended to be in combination with other modeling methods in
either regression or pattern recognition. Our future work will focus

on investigating the minute behavior of CARS and the application
of CARS in other fields, such as biomarker discovery using genomic,
proteomic and metabolomic data.
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