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This contribution introduces Elastic Component Regression (ECR) as an explorative data analysis method
that utilizes a tuning parameter α∈ [0,1] to supervise the X-matrix decomposition. It is demonstrated
theoretically that the elastic component resulting from ECR coincides with principal components of PCA
when α=0 and also coincides with PLS components when α=1. In this context, PCR and PLS occupy the two
ends of ECR and α∈(0,1) will lead to an infinite number of transitional models which collectively uncover
the model path from PCR to PLS. Therefore, the framework of ECR shows a natural progression from PCR to
PLS and may help add some insight into their relationships in theory. The performance of ECR is investigated
on a series of simulated datasets together with a real world near infrared dataset. (The source codes
implementing ECR in MATLAB are freely available at http://code.google.com/p/ecr/.)
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1. Introduction

With the development of modern analytical instrument, the
routinely produced data from biological and environmental samples
are tending to be characterized by a great number of high collinear
variables measured on a few samples. Often the number of such
variables, i.e. p, is much larger than that of the observations N. This
usually refers to the “large p, small N” problem. As is known to us,
ordinary least squares (OLS) cannot work in this situation. To tackle
this problem, a number of methods have been developed, among
which the latent variable-based multivariate regression technique
has been regarded as a natural way for analyzing such data. Loosely
speaking, this procedure works by computing a few latent variable,
followed by regressing the response variable on the derived latent
variables by means of OLS technique.

The most popular regression methods in the community of
chemometrics are principal component regression (PCR) [1,2] and
partial least squares (PLS) [3–6]. Thesemethods are heavily promoted
in chemometrics and have found very wide applications in a variety
of fields, such as near infrared (NIR) [7,8], microarray data analysis
[9] and metabolic profiles [10]. Other latent variable-based methods
known to statisticians but rarely mentioned by chemometricians are
canonical correlation regression (CCR), reduced rank regression (RRR)
and some other variations [11].

It's very interesting to note that there exists some potential
relationship between some of the above-mentioned methods.
M. Stone and R. Brooks constructed a general objective function and
introduced continuum regression (CR) which includes OLS and PCR
as the two opposite ends of a continuum spectrum with PLS lying in
between [12,13]. The established theories and algorithms for
implementing CR are to some extent difficult for us chemists/
chemometricians to understand. As the authors stated, the analysis
of PCR model, in the context of CR, is rather technical and is left to be
demonstrated only numerically. Following Stone and Brooks' work,
Sijmen de Jong and Henk A.L. Kiers presented principal covariate
regression (PCovR) by minimizing the proposed weighted least
squares loss function [14]. In brief, the procedure of PCovR moves
from ordinary least squares to principal component regression,
which can be seen as a relatively simple alternative for continuum
regression. John H. Kalivas et al. proposed Cyclic Subspace Regression
(CSR) [15] as a new approach to the complex multivariate calibration
problem. CSR was shown to produce solutions of PCR, PLS, LS and
other related intermediate regressions with one algorithm [16–18].
Recently, Sijmen de Jong et al. developed the canonical partial least
squares which offers a computationally efficient setting to carry out
the continuum regression approach [19]. On the whole, CR found a
variety of applications [20] in model calibration and has recently been
discussed by Sundberg [21] and Geladi [22].

The goal of this paper is to develop a new theory for continuum
regression, called Elastic Component Regression (ECR). What
distinguishes ECR from the previous work [12,14,15,19,21,22] lies
in that it specifically brings PCR and PLS under the same objective
function thus providing a continuous progression from PCR to PLS.
In this sense, the widely used algorithms, e.g. nonlinear iterative
partial least squares (NIPALS), can be borrowed after a slight
modification to efficiently compute the ECR model, which makes
ECR easy to understand and implement. In brief, a supervising
factor α∈ [0,1] is defined for ECR. In the context of ECR, PCR and PLS
mponent regression, Chemometr. Intell. Lab. Syst.
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are special cases corresponding to α=0 and 1, respectively. The
ECR models when α∈(0,1) are therefore could be some kind of
transitional models between PCR and PLS. It will be shown that the
transitional models with increased α from 0 to 1 can collectively
reveal how the PCR model evolves into the PLS model, leading to
the intuitive model path from PCR to PLS. Finally, a series of
simulated datasets and a NIR dataset are employed to explore the
performance of ECR.

2. Theory and the algorithm for ECR

Assume first that the sample matrix X and the response vector y
are both mean centered. From the optimization perspective, the first
principal component in PCR is computed by maximizing the variance
of the latent variable Xwpcr which is a combination of the original
variables in Xwith combination coefficientswpcr without considering
the effect of y. It can be formulated into the following optimization
problem

max wt
pcrX

tXwpcr

s:t:wt
pcrw

t
pcr = 1:

8<
: ð1Þ

By employing Lagrange multiplier method, it can be shown that
the objective function is maximized when wpcr is the eigenvector of
the covariance matrix XtX corresponding to the largest eigenvalue.
The first principal component can hence be calculated as

tpcr = Xwpcr : ð2Þ

Then the contribution of the first component is stripped, resulting
in the residual sample matrix

X = X−tpcrw
t
pcr : ð3Þ

Then the second, the third and etc. components can be sequentially
computed by repeatedly solving the optimization problem in Eq. (1)
based on the residualX-matrix. For more detailed information on PCR,
the readers are referred to the References [23,24].

While for SIMPLS [25], the objective function is to maximize the
squared covariance between latent variables of Xwpls and the original
y vector. Mathematically, it can also be formulated as the optimization
problem

max wt
plsX

tytyXwpls

s:t:wt
plsw

t
pls = 1:

8<
: ð4Þ

In the similar manner for computing principal components, the
PLS component can also be computed sequentially. Due to the fact that
the theory and algorithm of PLS are familiar to the chemometricians
and there is a large amount of relevant literature [5,13,26], details of
PLS are not presented here.

Note that the optimization problems in Eqs. (1) and (4) are of the
same formulation and differ only in the criterion maximized. In fact,
the two criteria of PCR and PLS can be combined into a general one
which can be expressed as

H = 1−αð ÞXtX + αXtytyX ð5Þ

where H is easily seen as a symmetric matrix and α∈ [0,1] is called
supervising factor, which controls how much information of y is
occupied in H. Obviously, α=0 indicates that H=XtX coincides with
the criterion of PCA, while α=1 will result in that H=XtytyX
coincides with the criterion of PLS. The situations for α∈(0,1) may be
considered as the compromise criteria. In this sense, the optimization
Please cite this article as: H.-D. Li, et al., Uncover the path from PCR to
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problems in Eqs. (1) and (4) can be combined into a general one,
which serves as the basis of elastic component regression:

max wtHw

s:t:wtw = 1:

(
ð6Þ

Also by utilizing Lagrangemethod or the Rayleigh–Ritz lemma, the
objective function in Eq. (6) is maximized when w is the eigenvector
of H corresponding to the largest eigenvalue. Then the first elastic
component can be computed as

t = Hw: ð7Þ

In the similar manner of PLS decomposition, the first elastic
loading of X can be computed using OLS as

p = Xtt = ttt: ð8Þ

The first loading of y can also be computed using OLS as

r = ytt= ttt: ð9Þ

Then, the dataX and y are deflated by removing the contribution of
the first elastic component, resulting in the residual X and y.

X = X−tpt ð10Þ

y = y−trt : ð11Þ

Iteratively, the second, the third and etc. elastic components can be
computed by repeatedly solving the optimization problem in Eq. (6)
based on the residual X and y.

At last, the algorithm for implementing ECR is given here. Assume
that both X and y are mean centered and a supervising factor α∈ [0,1]
is given. The maximal number of elastic component is set to A.

1. Compute H=(1−α)XtX+αXtytyX
2. Compute w as the eigenvector of H corresponding to the largest

eigenvalue
3. Compute X-scores t=Hw
4. Compute X-loadings p=Xtt / ttt
5. Compute y-loadings r=ytt / ttt
6. Deflate X=X− tpt and y=y−trt.

Repeat this procedure until A elastic components arefinished. Then
the regression vector of ECR can be computed as b=W(PtW)−1Rt,
where W, P and R stand for the weight, X-loading and y-loading
matrices, respectively.

3. Data and software

3.1. Simulated data

Five groups of datasets are simulated according to the method
for producing SIMUIN data in Reference [27]. First, SIM data of
size 25×100 are produced in three steps: (1) generating a matrix X
of random numbers from 0 to 1 with dimension 25×100; (2)
performing PCA on the mean-centered matrix X, yielding scores and
loadings and (3) reconstructing M using the first 5 principal
components and the response vector y are defined as product of the
first 5 components times a weight vector [5, 4, 3, 2, 1]t. After
generation of SIM data, a certain number, i.e. Q, of uninformative/
noise variables are appended to the SIM data, leading to SIMUI data
of size 25×(100+Q). Finally random noises are added to the SIMUI
data to produce the data called SIMUIN. The maximal value of noise
is limited to 0.005 as the literature does. In this study, we considered
5 cases: Q=20, 50, 100, 200 and 500, respectively. For each case, 1000
PLS via elastic component regression, Chemometr. Intell. Lab. Syst.
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Fig. 2. Illustration of two-way cross validation for determining the optimal value of both
α and nLV.
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datasets are randomly produced, which results in 5×1000 datasets
in all.

3.2. Corn NIR data

This benchmark dataset consists of NIR spectra of 80 corn samples,
measured bymp5 NIR spectrometer. Each spectrum contains 700 data
points measured in the wavelength range 2498–1100 nm at 2 nm
intervals. The moisture value is selected as dependent variable y. The
original spectra are shown in Fig. 1. This dataset can be freely available
at the website: http://software.eigenvector.com/Data/index.html.

3.3. Software

All the calculations are performed using our in-house programs
coded in MATLAB 7.6.0. The software for implementing ECR is freely
available at: http://code.google.com/p/ecr/downloads/list.

4. Results and discussions

4.1. Simulated data

To build an ECR model, α and the number of latent variables (nLV)
should be optimized first. In this work, two-way cross validation (CV)
is performed to simultaneously determine the optimal value of α and
nLV. Taking the SIMUIN data with Q=20 as an example, the RMSECV
surface resulting from two-way cross validation is shown in Fig. 2
where the optimal α and nLV can be chosen from the lowest point of
the RMSECV surface.

For each group of datasets, two-way CV is conducted on the 1000
randomly produced mean-centered datasets and the optimal α is
recorded, resulting in 1000 optimal α. Then we count the number of
the three cases: (1) α=0, (2) α∈(0,1) and α=1. Fig. 3 shows the
frequency of each case for all the 5 groups of datasets. Note that the
frequency of α=0 is 0 for all the datasets and thus not shown in Fig. 3.
It can be seen that the frequency of α∈(0,1) increases nearly in a
linear fashion while increasing the number of noise variables. This
observation may indicate that the ECR could to some extent resist the
negative influence of noise variables.

Furthermore, in order to show how the PCRmodel evolves into the
PLS model, we take four datasets with the number of noise variables
equal to 20, 50, 100 and 500, as examples to illustrate the model path.
For each of the four datasets, the number of latent variables is fixed to
5 and α uniformly increases from 0 to 1 with stepsize 0.1. Therefore,
Fig. 1. The original NIR spectra of 80 corn samples.

Please cite this article as: H.-D. Li, et al., Uncover the path from PCR to
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for each dataset we can compute altogether 11 ECR models, among
which the first and the last coincides PCR and PLS models and the
other 9 models in between are the transitional models. The 11 ECR
models can hence collectively uncover the model path from PCR to
PLS. In this work, PCA is performed on the 11 regression coefficient
vectors and the first 2 principal components are extracted to display
the model path in a two dimensional plane.

The 4 model paths for the 4 datasets are shown in Plots A, B, C
and D of Fig. 4, respectively. Interestingly, the 9 transitional models
become closer to the PLS model as the number of noise variable
increases. An extreme case is shown in Plot D where all the
transitional models are located very closely to PLS model. In our
opinion, the phenomenon is worth further investigating. Also, the
first two components of the four path plots capture 99.80, 99.93, 99.77
and 99.97% of the total variance of the corresponding regression
coefficient matrix, respectively. This result may suggest that the
models are highly correlated for a given data.
4.2. Corn NIR data

To comprehensively compare the predictive performance of
PCR, PLS and ECR, 80% of the 80 corn samples are randomly selected
into the calibration set, leaving the remaining 20% as test set. And we
Fig. 3. The frequency of the two-way cross validation-based optimal α value for the two
cases (1) α∈(0,1) and (2) α=1.

PLS via elastic component regression, Chemometr. Intell. Lab. Syst.
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Fig. 4. Illustration of the model path from PCR to PLS when the number of noise variables is set to 20 (A), 50 (B), 100 (C) and 500 (D), respectively. The PCR and PLS models are
marked by 1 and 11, respectively.
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repeat this procedure 1000 times thus obtaining 1000 calibration sets
and 1000 test sets. The rationale of using a large number of (1000) test
sets is to avoid possibly unreliable comparison which is addressed in
our previous work on model population analysis (MPA) [28]. For each
pair of calibration/test set, the minimal root mean squared errors
of CV (RMSECV) resulting from the aforementioned two-way cross
validation is taken to determine the optimal values of α and nLV. The
maximal nLV is set to 12 and the supervising factor α also uniformly
increases from 0 to 1 with stepsize 0.1. This step leads to 1000 optimal
α values, of which the frequency plot is shown in Fig. 5A. The count
numbers for the three cases: (1) α=0, (2) α∈(0,1) and α=1 are 55,
Fig. 5. The distribution of the optimal α values resulting from ECR before and after
variable selection on the NIR data.

Please cite this article as: H.-D. Li, et al., Uncover the path from PCR to
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329 and 616, respectively. This result shows that most of the optimal
models lie between PCR and PLS.

Then, we build on each calibration set a full-spectrum PCR, PLS and
ECR model, respectively, followed by making predictions on the test
set. Root mean squared errors of prediction (RMSEP) on the test set is
employed to assess the predictive performance of PCR, PLS and ECR.
The distribution of the RMSEP values for PCR, PLS and ECR is shown in
the left panel of Fig. 6. The mean and standard deviations of the three
distributions in the upper,middle and lower plots are 0.1455±0.0253,
0.1365±0.0220 and 0.1354±0.0217, respectively. From this result,
it can be found that ECR outperforms PCR and PLS in terms of lower
prediction error and slightly smaller standard deviations, indicating
that ECR may be a good alternative for multivariate calibration.

As is known, variable selection has great influence on model's
predictive performance. The influence of variables may be larger
than that of calibration methods. Therefore, the performances of
PCR, PLS and ECR are also investigated on the data only including a
subset of 19 variables/wavelengths selected by using competitive
adaptive reweighted sampling (CARS) [8,29]. In the same way as
aforementioned, 1000 calibration sets as well as 1000 test sets are
also randomly generated. The distributions of the 1000 optimal α
values resulting from two-way cross validation are shown in Fig. 5B.
Compared to Fig. 5A, the distribution is dramatically changed. The
optimal α values are dominated by PCR followed by PLS. The
transitional models only occupy a minority of them. The distributions
of RMSEP resulting from PCR, PLS and ECR are also presented in
the right panel of Fig. 6. The mean and standard deviations of
the three distributions in the upper, middle and lower plots are
0.1031±0.0173, 0.1049±0.0180 and 0.1038±0.0177, respectively.
It's very interesting to note that in this case study PCR performs best
by possessing the lowest mean prediction error as well as smallest
standard deviations. This study shows that the performances of PCR,
PLS and ECR are data-dependent. One cannot say which one is the
best. Besides, the fact that the three distributions of RMSEP overlap
heavily with each other implies that unconvincing (even erroneous)
PLS via elastic component regression, Chemometr. Intell. Lab. Syst.
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Fig. 6. The distribution of RMSEP values for PCR, PLS and ECR. Left: before variable selection. Right panel: after variable selection.
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conclusions may be drawn if different methods are compared based
on a single split of the data into a calibration and test set [28].

To show the model path from PCR to PLS, we take all the 80
samples to build 11 ECR models by increasing α from 0 to1 uniformly
with stepsize 0.1. The number of latent variables is chosen to be 10
by 5-fold cross validation. This procedure results in 11 regression
coefficient vectors, which are collected into a regression coefficient
matrix. Then PCA is performed on the matrix and the first two
principal components are utilized to display the model path from PCR
to PLS, which is shown in Plot A of Fig. 7. Obviously, it can be found
that ECR model gradually evolves from PCR into PLS model when α
increases. In addition, the minimal RMSECV as a function of α is also
shown in Plot B in Fig. 7. It is noteworthy that the RMSECV does not
Fig. 7. Plot A shows the model path from PCR to PLS using all the 80 samples with nLV set to
RMSECV changes with increased α. The circle denotes the minimum.

Please cite this article as: H.-D. Li, et al., Uncover the path from PCR to
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change much after α exceeds 0.6, which may be an indication that
α=0.6 is an optimal choice in this case.

4.3. A brief comparison with continuum regression

To intuitively see whether the model path from PCR to PLS
uncovered by ECR is the same as that by CR, the PCA-based model
paths from both methods are computed by taking the NIR data as
input. The number of latent variables is set to 10. For ECR, we compute
11 models with α uniformly increases from 0 to 1. For CR, the
continuum power regression (CPR) algorithm is employed and the α
values are chosen such that it covers the whole path from PCR to OLS
with PLS lying in between. The two paths are shown in Fig. 8. From
10. The PCR and PLS models are marked by 1 and 11, respectively. Plot B shows the how

PLS via elastic component regression, Chemometr. Intell. Lab. Syst.
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Fig. 8. The model paths computed by using ECR and CR, respectively.

6 H.-D. Li et al. / Chemometrics and Intelligent Laboratory Systems xxx (2010) xxx–xxx
this plot, it is clear that the model path provided by ECR directly
evolves from PCR to PLS, while the path between PCR and PLS
computed by CR is different. The different paths are in our opinion
very interesting and thus deserve further investigating. Besides, the
path from PLS to OLS from CR is also given. On the whole, it is shown
that the model paths provided by ECR and CR are not the same, which
will be further investigated in our future study.

5. Conclusions

Based on the theory of optimization, the elastic component
regression is developed in this contribution for uncovering the path
from PCR and PLS. ECR utilizes an adjustable supervising factor
α∈ [0,1] to supervise the X-matrix decomposition. In the context of
ECR, PCR and PLS occupy the two opposite ends with an infinite
number of transitional models that lie in between. The framework of
ECR shows a natural progression from PCR to PLS and may help get
some insight into their relationships in theory. The simulation study
together with the application to the NIR data shows that in some cases
the transitional models provided by ECR could perform better than
PCR and PLS. Also indicated in this work is that it may reduce the risk
of overfitting by controlling the value of the supervising factor α. Our
future work will be focused on the model selection based on ECR. It
is expected that ECR will find more applications in a variety of fields,
e.g. genomics and metabolomics.
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