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VOL. 11, No. 1 

Computer Aided Design of Experiments 

R. W. KENNARD AND L. A. STONE 

E. I. du Pont de Nemours & Co. 

A computer oriented method which assists in the construction of response surface 
type experimental plans is described. It takes into account constraints met in practice 
that standard procedures do not consider explicitly. The method is a sequential one 
and each step covers the experimental region uniformly. Applications to well-known 
situations are given to demonstrate the reasonableness of the procedure. Application 
to a "messy" design situation is given to demonstrate its novelty. 

0. INTRODUCTION 

The studies which preceded the findings and conclusions reported in this 
paper were undertaken to meet some practical aspects of experimental planning 
that are not covered by many of the more commonly used experimental plans, 
especially in model building and response surface exploration. The ability to do 
reasonable smoothing of the results and to have plans as model-free as possible 
was of particular interest. 

Considerable work has been done in deriving experimental plans for response 
surface exploration by first postulating a model and then deriving a plan based 
on one or more criteria of optimality. Excellent results have been achieved via 
this route and some of the derived plans have been used widely. However, there 
are a number of planning situations that present practical constraints that 
other approaches either ignore or compromise. The more important ones are: 

(i) Models are vague. 
At the time of the construction of the experimental plan, the relationships 

between the factors and the responses are difficult to put in specific mathematical 
form-either in terms of a given function or a class of functions. Sometimes 
detailed information is contained in the results of runs that have already been 
executed. These runs should be a part of the plan and the subsequent analysis. 
Prior information or assumptions on the response of the system may be avail- 
able only in general terms, e.g. a set of candidate points for a four-factor experi- 
ment described as a 2.3.52 limits the relationship of the first factor and the re- 
sponse to a linear one and the second one to a quadratic (without a transforma- 
tion). It is doubtful if the two five-level factors reflect the desire to estimate up to 
a fourth degree polynomial; rather, they probably reflect hedges against com- 
plexity or uncertainties such as what transformations of the factors should be 
used, the possible existence of asymptotes, and the like. Of as much practical 

Received January 1968. 

137 

TECHNOMETRICS FEBRUARY 1969 



R. W. KENNARD AND L. A. STONE 

importance as any other consideration is the fact that each experiment is a 
multiple response one-five to twenty responses are not uncommon. Hence, 
experimental plans based on postulated models really have to consider multiple 
models. So here we assume that the details of the model building come more after 
the execution of the experiment than before it. 

(ii) Practical factor spaces can be "messy". 
A standard design procedure is to assume that the factor space can be repre- 

sented as a region bounded by a p-dimensional hypercube or hypersphere with 
any point on or inside the cube or sphere being a candidate design point. Simpli- 
fication is often achieved by limiting the candidates to certain lattice points. 
However, practical problems of realizability, operability, and availability of the 
system being studied make it necessary to chop corners off the cubes, take slices 
off the spheres, or to dig holes in the region. In such cases, it can become diffi- 
cult to obtain an explicit mathematical description of the region and the boun- 
dary enclosing it. "Messy" as these regions may be, the practical possibilities 
are usually lattice points and it is often possible to make a tabulation of these 
candidates. In the developments here we will assume that a tabulation of candi- 
date design points exists. 

(iii) Replication is a separate design consideration. 

A primary constraint on the experimenter is the number of experimental runs 
that he can make; this number is small compared to the number that are con- 

ceptually possible. When this number is fixed and the model is fixed, almost all 

"optimum" allocation schemes lead to "uncomfortable" replication; that is, the 
number of distinctly different points to be observed is small and some are 

heavily replicated. The experimenter's model is usually vague and uncertain, so 
he wants to cover his region reasonably well. Having accomplished this, he will 
consider replication to assess the validity of his prior estimates of the control 
and reproducibility of his process. We focus on the primary problem of "covering 
the region" and leave replication as an important but secondary consideration. 

1. CRITERIA FOR A DESIGN 

The conditions and restraints under which the experimental program is to be 
executed lead to the conclusion that the factorial design (when the factor space 
is the proper shape) is an ideal and the more levels per factor the better. The 
factorial gives good, uniform coverage of the factor space and it gives an oppor- 
tunity to develop models of the observed phenomenon with a minimum of 

assumptions. Although we envision the use of any planning procedure that we 

develop to be used primarily in nonfactorial type situations, we establish a 
criterion that when the factor space is nice and round or square, the procedure 
should generate a factorial type structure or a reasonable facsimile. No explicit 
criterion for measuring coverage will be used, but we use these guide lines: 

(1) when the design is complete, no candidate point not included in the design 
should be "too far" from a design point, and (2) coverage should start on the 

boundary of the factor space. The latter seems reasonable as follows: If the 
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number of factors is p, the number of runs is n, and n is not much larger than p, 
then no amount of wishful thinking can produce a model that is other than linear 
and additive. The best way to learn about slopes is to go to the extremes of the 
factor space, so we start here. If prior information runs counter to this assump- 
tion, we incorporate this information into the design by forcing the appropriate 
points in the space to be in the design. 

2. GENERAL STATEMENT OF THE DESIGN PROCEDURE 

There are p factors (xi, x2, ... , x) that can be controlled. An experimental 
design is to be selected from a set of N points in the p-dimensional space defined 
by the factors. We denote these N points as candidates and represent them as 
follows: 

Xll X21 ? Xl 

X12 X22 .. ' p2 

X= ... (2.1) 
Xi, X2y, . xpy 

_XiN X2N .. XpN- 

A design will be n < N distinct points chosen from the candidates. The design 
points are chosen sequentially. At each stage in the choice sequence, the aim 
will be to have the points in the design "uniformly" spaced over the space 
defined by the candidates. We make this explicit. Let 

D, = lx - x,,2 = E (Xk - 
k,,)2 (2.2) 

k-l 

the squared distance from point v to point A. 
Let P. , P2 , * * *, P., * * , Pk. , k * < n, be k points that have been 

assigned to the design. Then define 

(kc) = min {(D.,D. ... , D.I} i* = 1, 2, ... , N (2.3) 
i* 

Thus A,(k) defines the squared distance from candidate point v, not yet in the 
design, to the nearest design point. 

For the (k + l)st point in the design, we choose from among the remaining 
(N - k) candidates using the criterion 

Ak+1 = max i{A(k)} (2.4) 

Thus we choose the point among those remaining that is farthest from an 
existing design point.* 

It remains to give a starting procedure. If a decision is made a priori that 
certain candidates must be included in the design, once these are specified the 
relations (2.2), (2.3), and (2.4) can be used repetitively to select the remaining 

* Note: The interpoint distances have to be calculated but once. The quantities A2(k) can 
be obtained by simple summing in a vector generated from the interpoint distances. 
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points necessary to make a design of size n. Otherwise, to start we use 

D2?x = max II X - x,ll2 (2.5) 
v . u 

V<fl 

That is, the first two points of the design P1, and P2* are selected by choosing 
the two candidate points that are farthest apart. Then max { A(k) } is used to 
select the remaining (n - 2). 

There is no guarantee of uniqueness of D2ax or A+ for any of value of k. 
There may be more than one pair of points that are the same distance apart and 
there may be more than one candidate point whose minimum distance to a 
design point gives the same maximum. However, the procedure is aimed at 
aiding in the choice of a design and not mathematical uniqueness. The following 
is used to break ties: Each point is identified from its index in (2.1). If A'+, is the 
same for points v , v2, .v , Vr then the (k + 1)st point is selected by choosing 
the point with the smallest index. The other (r - 1) points are tabulated for 
reference. All pairs of points are labeled (v, j) with v < ,I. If D2~ is the same for 
several pairs (v, ,L), the pair chosen to start is the one with the smallest v index. 
This method of breaking ties may appear arbitrary and of doubtful rationale. 
However, in the "messy" space situations the probability of ties has been 
observed to be small. In spaces with a more regular structure, all the ties usually 
get into the design if n is large enough. If they are omitted by the size of n, 
substitution of tied points is always available. 

Since the procedure outlined in (2.1) through (2.5) is based on the calculation 
of distances, it is sensitive to the metrics for the various factors. But this is a 
common problem in all quantitative factor design problems. Choice of the 
metrics is the choice of the experimenter. In the absence of any other criterion, 
it is recommended that a standardization step that will put X'X is the form of a 
cosine (correlation) matrix be carried out first. That is, the elements of X are a 
result of the transformations 

Xi. = (Xi, - Xi.)/[Z (Xi, - X)] 
where Xi. = E Xi/N (2.6) 

and the Xi, are thr raw coordinate values. 
The transformation (2.6) will suffice to produce reasonable designs if the 

factor space does not deviate "too much" from a hypercube or hypersphere. On 
the other hand, a study of the maximum-minimum distance procedure will show 
that it will tend to follow the shape of the space too faithfully, especially for 
the smaller values of n which are those of interest. To circumvent this difficulty 
and to get designs that have more uniform coverage, the distance calculations 
are proceeded by an orthonormalizing transformation. Using a Choleski variant 
of Gaussian elimination, make the decomposition 

X'X -* T'T (2.7) 

where T is upper triangular. 
This assumes that X is of rank p, a not unreasonable assumption. If rank 

(X) < P, then it seems that the process under investigation has not been well 
defined. Using T next make the transformation 
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W = XT-' (2.8) 

Then W'W = I, and we have tended to give the points a more spherical 
orientation. The distance calculations and the point choices are made using the 
elements of W rather than X. 

3. EXAMPLES OF THE DESIGN PROCEDURE 

A. Factorial Structure of the Form 52 

The operation of the design procedure can be demonstrated with a simple 
two-factor situation with N = 25 candidate points as shown in Figure 1. 

2 

(6) (7) (8) (9) (10) 

* .;) 0 X2 (11) (12) (13) (1 ) (15 

* * * * * -1 
(16) (17) (18) (19) (20) 

(21) (22) (23) (24) (25) 

-2 -1 0 1 2 

X, 
FIGURE 1-52 

The step-by-step build-up of the design will go as follows: 
Start: The pairs of points (1, 25) and (5, 21) are tied for the points being 

farthest apart. Choosing the pair having the point with the smallest index, 
viz. 1, the pair (1, 25) is chosen. Hence, the first two design points are: 

Point 1 - #(1) - (-2, 2) 

Point 2 - #(25) - (2, -2) 

Choice: There are now (N - 2) = 23 of the candidate points not in the 
design. For each of these points we compute its squared distance to each point 
in the design, that is, points (1) and (25). For example, take point (2) with co- 
ordinates (-1, 2). Its squared distance to point (1) is 1 and to point (25) is 25. 
Hence 

min {D , D.25} = min 1, 25} = 1. 

The same calculation is made for each point. It is clear that the points (5) 
and (21) are tied for being farthest from the design points (1) and (25) with a 
minimum squared distance of 25. Choosing the one with the smaller index, the 
third point is: 

Point 3 - #5 - (2, 2). 
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Choice: The procedure outlined for choosing point number three in the 
design is now applied sequentially. The next two obtained are: 

Point 4 - #(21) - (2, -2) 
Point 5 - #(13) - (0, 0). 

Each of these points is unique and is not tied with another when it is a candi- 
date to be chosen. Thus the procedure has produced a 22 using =-2 as the levels 
for the first four points; then the center point is added. There are four candidates 
for the sixth point in the design, they are (3), (11), (15), and (23). Continued 
application of the procedure shows that each of these will be selected to fill out 
the 32 factorial. Four more selections give: 

Point 6 - #(3) - (0, 2) 
Point 7 - #(11) - (-2, 0) 
Point 8 - #(15) - (2, 0) 
Point 9 - #(23) - (0, -2) 

This serves to demonstrate that the procedure is reasonable in a small, well- 
structured situation. 

B. Factorial Structure of the Form 44 

The reasonableness of the design procedure and its usefulness in "discovering" 
designs can be further demonstrated by its performance in the four-factor 
situation with four levels for each factor denoted as (-3, -1, 1, 3) in the raw 
units. This array is not one that fits directly into many standard design schemes, 
although one can generate certain candidates by association of the levels of the 
factors with those of a 28 system. 

The indexing scheme used was to start with the point (-3, -3, -3, -3), 
indexing through the levels of factors four, three, two, and one, in that order, to 

generate a total of 256 candidates. 
The results of the procedure given in Section 2 are as follows: 

1. First two points 
Point 1 - #(1) - (-3, -3,-3,-3) 
Point 2 - #(256) - (3, 3, 3, 3) 

There are eight pairs of points tied with the greatest distance between them. 

They are readily seen to be the points corresponding to a 24 if the levels 
are -3. This pair is used to start as a result of the application of the tie- 

breaking procedure. 

Based on the ties that occur in subsequent choices using the max-min algo- 
rithm, there appear to be "natural" designs of size n = 8, 16, 18, and 26 in the 
smaller sizes that would be of interest. 

2. Up to n = 8 

After the points (1) and (256) are in the design, there are six points tied 
for inclusion. The next six iterations of the procedure bring them into the 

design. The points and their coordinates are: 
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Point 3 - (16) - (-3, -3, 3, 3) 
Point 4 - (52) - (-3, 3, -3, 3) 
Point 5 - (61) - (-3, 3, 3, -3) 
Point 6 - (196) - (3, -3, -3, 3) 
Point 7 - (205) - (3, -3, 3, -3) 
Point 8 - (241) - (3, 3, -3, -3) 

These are recognized as completing the one-half replicate of the 24 using 
the levels -3. 

3. Up to n = 16 

Once there are eight points in the design, there are eight points tied. The 
procedure includes them in their index order for the next eight points. 
Their indices and coordinates are: 

Point 9 - (4) - (-3, -3, -3, 3) 
Point 10 - (13) - (-3, -3, 3, -3) 
Point 11 - (49) - (-3, 3, -3, -3) 
Point 12 - (64) - (-3, 3, 3, 3) 
Point 13 - (193) - (3, -3, -3, -3) 
Point 14 - (208) - (3, -3, 3, 3) 
Point 15 - (244) - (3, 3, -3, 3) 
Point 16 - (253) - (3, 3, 3, -3) 

The first 16 points thus constitute the full 24 factorial using the levels t?3 
and all the starting point ties have been included. 

4. Up to n = 18 

The next two points (ties) included are: 

Point 17 - (86) (-1, -1, -1, -1) 
Point 18 - (171) (1, 1, 1, 1) 

These two points together constitute a center point since the center of 
gravity (0, 0, 0, 0) is not a candidate point. 

5. Up to n = 26 

The next eight points (ties) included are: 

Point 19 - (43) - (-3, 1, 1, 1) 
Point 20- (88) - ( -1, -1,-1, 3) 
Point 21 - (94) - (-1, -1,3, -1) 
Point 22 - (118) - (-1, 3, -1, -1) 
Point 23 - (139) - (1, -3, 1, 1) 
Point 24 - (163) - (1, 1, -3, 1) 
Point 25 - (169) - (1, 1, 1, -3) 
Point 26 - (214) - (3, -1, -1, -1) 

The build-up of the design points is shown in Figure 2. A number in a block 
indicates that the point is included, the number giving the step in the 
the procedure at which it was chosen. 
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44 FACTORIAL STRUCTURE 

X3 X4 
I I 

-3 
-3-1 I 

-I 

31-3-1 I 31-3-1 

3 

3 -3-I I 3 

-3 2 II 13 8 
-I 

-3 
I 24 
39 4 6 15 

-3 
-I 17 22 26 

-I 

3 20 

-3 25 
-I 
I 19 23 18 
3 

-3 10 5 7 16 

3 -I 21 

3 3 12 14 1 

NUMBERS GIVE THE ORDER IN WHICH THE 
POINTS ENTER THE DESIGN 

FIGURE 2 

Altogether the procedure develops three reasonable designs in addition 
to the obvious factorials. 

(i) 26 Point Design 
This balanced. All levels are covered. For each factor the levels -3 

and 3 are observed nine times each and the levels -1 and 1, four times 
each. The design vectors are nearly orthogonal. 

(ii) 18 Point Design 
Two reasonable designs are evident. Either of the one-half replicates 

(1 through 8 or 9 through 16) augmented by the last ten points. Again, 
there is balance and near orthogonality. 

C. Factorial Structure with Inoperable Regions 
This last example is in the category of messy factor spaces. It is an example of 

a design situation for which the procedure should give real assistance. The 
structure of this problem is best shown in Figure 3. It is of the form 34.4. How- 

? ? I 
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ever, the shaded blocks represent factor combinations that are not available or 
not operable so that N = 216, rather than the 324 that it would be if the complete 
factorial structure were available. An assessment of the imbalance caused by 
the elimination of the 108 factor combinations can be obtained from the eigen- 
values of X'X in correlation form. For the full factorial X = 1 i = 1, 2, ... , 5; 
for the N = 216 points, they are 1.577, 1.000, 1.000, 0.924, 0.499. Because of 
this imbalance, the orthonormalizing procedure was used prior to the execution 
of the max-min algorithm. 

In this example ties are few. Two pairs of points are tied for the starting pair. 
In the succeeding 23 steps using max-min, pairs of points are tied at four steps 
and both points in the pair enter the design. In Figure 3, the numbers in the 
blocks again give the points that are included in the design and the order in which 
they are chosen. A design of size n = 25 is shown to assist in an assessment of the 
procedure. Table 1 gives a cross tabulation of the number of times pairs of 
factor levels appear both as candidates and as elements of design points. The 
design points are well distributed over the factor space. The design vectors are 
nearly orthogonal; the correlation matrix for these vectors is: 

1.000 .036 .129 -.103 .022 

1.000 -.007 -.049 -.082 

X'X25 = 1.000 -.110 .004 

1.000 .138 

_Symmetric 1.000 
Its eigenvalues are: 1.266, 1.103, .961,1, .861, .809. 

Figure 4 shows another 25-point design and another use of the design pro- 
cedure. Note that the numbered blocks go from 1 to 14. The other 11 points in 

TABLE 1 

TABLE 1 Messy Design Problem Cross Tabulation of Candidate & Design Points M = 25. 

X2 

Totals 70 100 250 500 
68 (8) 17 (2) 17 (2) 17 (0) 17 (4) 40 
92 (7) 23 (1) 23 (1) 23 23 23 (4) 25 X1 
56 (10) 14 2) 14 3) 14 (1) 14 (4) 10 

216 (25) 54 (5) 54 (6) 54 (2) 54 (12) Totals 

X4 

Totals 4 6 8 
68 (8) 24 (4) 20 (0 24 (4 40 
92 (7) 36 (3) 32 (3 24 1) 25 X 
56 (10) 24 (4) 20 3) 1 3) 10 

(25) 84 (11) 72 (6) 60 (8) Totals 

X3 
Totals 1 3 6 
54 t12) 18 i4) 24 (5) 12 (3) 500 
54 (2) 18 (1) 24 (0) 12 (1 250 X2 
54 (6) 18 (1) 24 (3) 12 2 100 
54 (5) 18 (1) 24 (3 12 (1 70 

(25) 72 (7) 96 (11) 48 (7 Totals 

X5 
Totals 0 3 10 
54 (12 19 (6) 16 (0) 19 (6) 500 
54 (2 19 (0) 16 () 19 2) 250 Xo 
54 (6) 19 (1) 16 (1) 19 (4) 100 
54 (5 19 (3 16 (1 19 (1) 70 

(25 76() 64 (2 76 (13) Totals 

X5 
Totals 0 3 10 
48 (7) 16 (2) 16 (1) 16 (4) 6 
96 (11 36 (6) 24 (0 36 (5 3 X3 
72 (7 212) 24 24 4 1 

(25 76 (10 64 12 76 (13 Totals 

Totals 1 3 6 
68 (8) 36 (4) 32 (4) ---- 40 
92 (7) 36 (3) 32 (1) 24 3) 25 XA 
56 (10) ---- 32 (6) 24 4) 10 

(25) 72 (7) 96 (11) 48 7) Totals 

x5 
Totals 0 3 10 
68 (8 24 (3 20 1 24 40 
92 (7 32 4 28 0O 32 3 25 X1 
56 (10) 20 3 16 1) 20 (6) 10 

(25) 76 (10) 64 (2) 76 (13) Totals 

X4 
Totals 4 6 8 
54 (12) 21 (5) 18 (3) 15 (4) 500 
54 (2) 21 (1) 18 (1) 15 (0) 250 X2 
54 (6) 21 (2) 18 2) 15 (2) 100 
54 (5) 21 (3) i8 (0) 15 (2) 70 

(25) 84 (11) 72 (6) 60 (8) 

X4 

Totals 4 6 8 
48 (7) 24 (3) 24 (4) ---- 6 
96 (11) 36 (5) 24 (1) 36 (5) 3 X3 
72 (7 24 (3) 24 (1) 24 (3) 1 

(25 84 (11) 72 (6) 60 (8 Totals 

X5 
Totals 0 3 10 
60 (8) 20 (4) 20 (0) 20 (4) 8 
72 (6 28 (2 16 (1) 28 (3) 6 X4 
84 (11 28 4 28 1 28 6) 4 

(25 76 (10) 64 (2) 76 (13) Totals 
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the design are represented by the blocks with dots; they correspond to factor 
combinations that had been executed prior to the design. Hence the procedure 
started with k = 11 and iterated to n = 25. Again, the coverage is reasonably 
uniform, indicating a "good" design. 

4. USING THE METHOD 

The algorithm, as outlined in Section 2, has been used in a large number 
of nonstandard design situations and in each case has been able to produce a 
practical design. However, its spirit is not that of a cookbook, but that of an 
assistant. Those who have used it have found a number of ways to vary the 
parameters of the algorithm to give information on the structure of the factor 
space that make it possible to construct small designs that are not obvious by 
inspection. Especially attractive has been the "boss option," the ability to 
include points specified by authority without sacrificing the overall objectives 
of the exploration. 

Although no examples were given, the procedure has been found to do a 
creditable job for mixture systems and for cases in which a nonlinear model has 
been specified, without the combinatorial problems inherent in some other 
approaches. Of course, if there is a model that one wants to use to fit the data, 
the design vectors can be expanded to generate the vectors appropriate to the 
model, and these generated vectors used as input to the procedure. Candidate 
designs can then be evaluated by looking at variance contours, determinant 
of (X'X)-', and the like. However, building models in constrained spaces such 
as in the "messy" design example is a problem in itself. All parameters in the 
usual response surface smoothing function are not always estimable, either 
mathematically or practically. 

One obvious limitation of a method based on interpoint distances is the 
computer memory necessary to store the distances, and this is true for even 
the largest computers. For problems having a very large number of candidate 
points, it has been found that a workable procedure is to first calculate the 
radius for each point, sort the radii, choose radii bands, and then have only 
points in these bands as input to the selection procedure. 

The algorithm has also been applied in post-mortem data analyses for situa- 
tions in which the data collection procedure has resulted in pseudo-replication 
and, hence, a poorly conditioned X'X matrix. 

5. COMPUTER PROGRAM 

CADEX-I, a computer program to implement the procedure, has been written 
in FORTRAN IV for the UNIVAC 1107 or 1108 and makes extensive use of 
the high-speed drum of these machines. A large number of auxiliary parameters, 
not described in the text, are computed to assist the user. Operating instructions 
and a program deck are available from the authors. 
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