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Abstract

Variable (or wavelength) selection plays an important role in the quantitative analysis of near-infrared (NIR) spectra. A modified method of
uninformative variable elimination (UVE) was proposed for variable selection in NIR spectral modeling based on the principle of Monte Carlo (MC)
and UVE. The method builds a large number of models with randomly selected calibration samples at first, and then each variable is evaluated with a
stability of the corresponding coefficients in these models. Variables with poor stability are known as uninformative variable and eliminated. The
performance of the proposed method is compared with UVE-PLS and conventional PLS for modeling the NIR data sets of tobacco samples. Results
show that the proposed method is able to select important wavelengths from the NIR spectra, and makes the prediction more robust and accurate in
quantitative analysis. Furthermore, if wavelet compression is combined with the method, more parsimonious and efficient model can be obtained.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Chemometrical methods have become hot points and been
widely applied in analytical chemistry in recent years.
Especially, multivariate calibration methods have been playing
indispensable roles in near-infrared (NIR) spectral quantitative
analysis. Many multivariate calibration methods, such as
principal component regression (PCR) [1], partial least squares
(PLS) [2,3], artificial neural network (ANN) [4] and support
vector regression (SVR), [5,6] are widely used to build the
quantitative model in NIR spectral analysis.

The quality of a multivariate calibration model depends,
among others, on the quality of both objects and variables. NIR
spectra are typically consisted of broad, weak, non-specific and
overlapped bands [7]. Moreover, NIR data sets may have
thousands of wavelengths and hundreds or thousands of
samples. Therefore, there may be some irrelevant variables for
multivariate calibration. Elimination of uninformative variables
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can predigest calibration modeling and improve prediction
results in terms of accuracy and robustness. Better quantitative
calibration models may be obtained by selecting characteristic
wavelengths including sample-specific or component-specific
information instead of the full-spectrum. For this aim, several
methods have been developed, such as the correlation coefficient
method [8], interval PLS (iPLS) [9,10], stepwise regression
analysis (SRA) [11], uninformative variable elimination (UVE)
[12,13] and genetic algorithms (GA) [14,15].

Uninformative variable elimination by PLS (UVE-PLS) is a
method for variable selection based on an analysis of regression
coefficients of PLS [12]. The method consists of evaluating the
reliability of each variable in the model through a variable
selection criterion, i.e., the stability of each variable, and
eliminating the uninformative variables. UVE-PLS method has
been widely applied in analytical chemistry, and satisfactory
prediction results are obtained comparing with many other
methods of wavelengths selection [12,16—18]. However, in the
course of acquiring stability values and the criterion, a leave-
one-out jackknifing is adopted and extra random variables with
the equal size of the spectra are needed. The procedure is time-
consuming when it meets a large data set.
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In this work, in virtue of the Monte Carlo (MC) technique and
the stability criterion in UVE method, a modified method of UVE
for variable selection is proposed and named as MC-UVE. The
method builds a large number of models with randomly selected
calibration samples at first, then by using the coefficients of these
models, each variable is evaluated with a stability of the corre-
sponding coefficient. Multiple models with different calibration
subsets produced by the MC technique may effectively identify
and encode more aspects of the relationship between independent
and dependent variables than will a single model. Therefore, it
can be expected to decrease the risk of over-fitting [19,20], and
accordingly, evaluate the reliability of each variable more
reasonably. Moreover, the MC-UVE is faster in computation
than UVE for large data sets because extra random variables are
not used. Calibration of NIR spectra and the routine ingredients
(sugar compounds and nicotine) of tobacco samples were
investigated with the proposed method. It is found that the
accuracy of the predicted results obtained with the selected
informative variables by MC-UVE is equivalent as or slightly
better than that of the conventional PLS method obtained with
full-spectrum data and that of the UVE-PLS method. Further-
more, Wavelet transform (WT) has been found to be a very
efficient tool in processing analytical signals [21,22]. With WT
technique, NIR spectra can be represented by only small amount
of wavelet coefficients [23-26]. Therefore, selection of the
informative wavelet coefficients with the MC-UVE method,
named as WT-MC-UVE, was also investigated, and it was found
that better results and more timesaving procedure can be obtained
by fewer variables compared with the MC-UVE method.

2. Theory and algorithm
2.1. Uninformative variable elimination by PLS (UVE-PLS)

In linear least squares models, the predictions ¥ are com-
puted by the equation:

y=XB+b (1)

Where X is an n X p matrix containing p spectral responses
of n samples, B is a p x 1 vector of regression coefficients and
by is the model offset.

UVE-PLS method is presented in reference [12]. A
regression coefficient matrix 3 = [f,....,8,] is calculated through
a leave-one-out validation [12,13]. Because each coefficient f3;
represents the contribution of the corresponding variable to the
established model, the reliability of each variable j can be
quantitatively measured by the stability defined as:

s; =mean(f,)/std (B;) j=1...p (2)

where mean(f};) and std(3;) are the mean and standard deviation
of the regression coefficients of variable ;. It is clear that, when
the mean value of ; is large and the standard deviation of f3; is
small, the stability value is large. Therefore, the larger the
stability, the more important the corresponding variable is. The
variables whose stability is less than a threshold should be
treated as uninformative and be eliminated.

In order to estimate a suitable cufoff threshold, an artificial
random variable matrix NV (n x p) with very small amplitude
(e.g. 107 ') is added to the original data to compute their
stability [13]. It is obvious that any variable whose stability is
less than that of random variables should be known as unin-
formative and be eliminated. In practice, the cufoff threshold is
generally defined by:

cutoff =k x max ( abs (Spoise)) (3)

where £ is an arbitrary value, e.g. 0.7 or 0.9.

2.2. Monte Carlo method

The Monte Carlo method, or called as the random imitative
method, is a powerful and widely used technique for analyzing
complex (multi-variable) problems. It is a stochastic technique,
which is based on the use of random numbers and probability
statistics to investigate problems. It has been applied in many
fields such as statistical tests, optimization procedures, system
analysis, and signal detection, etc. [27—29] In multiple regres-
sion analysis, Monte Carlo cross-validation (MCCV) is one of
the most useful methods for modeling and prediction problems,
which was first proposed by Picard and Cook [19] and its ability
has been reported in several studies [30,31].

In this work, MC method is used in the procedure of acquiring
stability of each variable. A large number of PLS models with
different calibration samples selected by the MC technique are
produced, then by using the regression coefficients of these
models, the stability of the corresponding coefficient is cal-
culated. The procedure has advantages of reducing dependence
on single model and evaluating the reliability of each variable
credibly to judge the remaining or rejection of them.

2.3. Monte Carlo combined with UVE (MC-UVE)

On the basis of the UVE and MC method, a combination of
MC and UVE (MC-UVE) is used for variable selection in NIR
spectral modeling. It uses the stability defined in UVE method
to evaluate the reliability of each variable, but the stability
values are obtained through the Monte Carlo method replacing
the leave-one-out procedure in UVE. Moreover, instead of
adding random noise variables to the original data matrix as in
UVE method to estimate the cutoff threshold, the wavelengths
to be selected are determined directly by their stability, which is
more convenient. Then build PLS model by using the retained
variables to predict unknown samples. The detailed procedures
can be described as follows:

(1) All spectra (samples) are randomly divided into a training
set, an assessing set and a prediction set. To ensure the
concentration of training set covers all prediction sam-
ples, three samples of the highest and the lowest concen-
tration are put into the training set manually.

(2) By the Monte Carlo technique, randomly select a certain
amount (N,) of samples from the training set as the
training subset for constructing a PLS sub-model, and the
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procedure is repeated M times. Then, a matrix of the PLS
regression coefficients @ (M x p) are calculated [13], with
which the stability of each variable s (1 x p), is calculated
by using the Eq. (2).

Following the principle of Monte Carlo technique, a large
portion (e.g. 40—60%) of the training data should be set
aside as a validation data set [20, 32]. In this work, N, is
set as a number of 50% the whole training set to construct
PLS sub-models. M is set with 100, which is proved to be
enough to assure a precise estimate of the stability.

(3) With the stability obtained above, a number (V;) of the
informative (stable) variables is selected for building the
final PLS model, i.e., to rank the stability of all the var-
iables from the highest to the lowest, and set the stability of
the Njth as the cutoff value. The variables whose stability
is less than the cutoff are eliminated. The optimal value of
N; is discussed in the following section by using the
prediction results of the assessing set.

(4) With the selected variables, build a PLS model by using
the whole training set and predict the samples in the pre-
diction set.

2.4. MC-UVE with wavelet transform (WI-MC-UVE)

WT has been found to be a very efficient tool in processing
analytical signals, especially in compression of spectral data
[25,33]. In this study, as a preprocessing tool, discrete wavelet
transform (DWT) is used, which is a special case of WT that
provides a compact representation of a signal in time and
frequency. If the MC-UVE is applied to the wavelet coefficients,
a more parsimonious PLS model can be obtained. Therefore, in
the WT-MC-UVE method, wavelet coefficients are used to
replace the raw spectra for variable selection.

3. Experimental and calculations

Two data sets were prepared for this work. One (data set 1)
consists of 373 samples and nicotine content was measured for
modeling. The other one (data set 2) consists of 288 samples
and total sugar content was measured for modeling.

NIR spectra of tobacco lamina samples were measured on a
Vector 22/N FT-NIR System (Bruker, Germany). Each NIR
spectrum was recorded in the wavenumber range 4000—
9000cm~ ' (2500nm—1100nm) with the digitization interval
ca. 4cm~ . Each spectrum is composed of 1296 data points.
Fig. 1 shows an example of the NIR spectra. The concentration
of nicotine and sugar content in tobacco samples were measured
on an Auto Analyzer III (Bran+Luebbe, Germany) following
the procedures of the standard method.

For data set 1251 samples were used as training data set, 61
samples were used as assessing data set, and the other 61 samples
were used as prediction data set. In the calculation of data set 2194
spectra were used as training data set, 47 samples were used
as assessing data set, and the other 47 samples were used as
prediction data set. In the comparison of MC-UVE-PLS, WT-
MC-UVE-PLS, UVE-PLS and common PLS methods, the same
training set and prediction set were used.
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Fig. 1. An example of the measured NIR spectra of tobacco lamina samples.

On the other hand, in the calculation of wavelet transform,
several wavelet filters, such as Daubechies, Symmlet, Coiflet,
etc. and different decomposition scales are investigated. It is
found that there is no significant difference between these filters
and scales. Daubechies with vanishing moment 10, i.e., “db10”
wavelet filter and scale = 9 are adopted in this work. In the
calculations of WT-MC-UVE, the wavelet coefficients are taken
as the input as described above.

4. Results and discussions

4.1. Determination of the principal factor number (ny) for PLS
modeling

The number of principal factor (n5) of PLS is an important
parameter in the modeling. Therefore, in this work, The param-
eter is determined with the root mean squared error of prediction
(RMSEP) of the assessing set and the RMSEP of the calibration
set in cross-validation (denoted by RMSECV). RMSEP is
defined as

) 1/2
RMSEP = [iz (i — ij)z] (4)
i=1

where y; and y; are the predicted and measured concentration of
the ith sample, and » is the size of the assessing set. In the
calculation of RMSECYV, y; is the predicted value in cross-
validation, and # is the size of calibration set. Fig. 2(a) and (b)
show the variation of RMSEP and RMSECYV with the principal
factor number of the three methods, i.e., PLS, UVE-PLS and
MC-UVE-PLS method, for the two data sets, respectively. From
the figures, it was clear that both RMSEP and RMSECYV have a
descending trend with the increase of the principal factor
number, but the trend slowed down after n > 10. Therefore,
Monte Carlo cross-validation with F test was used for con-
firming the suitable principal factor number, and the results
show that 10—13 can be used. In order to make the model as less
as complex and use an identical parameter in the three models,
ne= 10 was used further calculations.
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Fig. 2. Variation of RMSEP and RMSECV with the number of factors by UVE,
MC-UVE and PLS methods for data set 1 (a) and data set 2 (b).

4.2. Variables selection for data set 1

Fig. 3(a) and (b) show the stability of each variable in the
wavenumber 4000-9000cm ™ ' for the nicotine data set by UVE and
MC-UVE method, respectively. In the figures, the dot lines show the
cutoff, which is determined by ;= 100 for the MC-UVE and by k=
0.88 for UVE method (it is an equivalent to N; = 109). The vertical
bar in Fig. 3(a) indicates the stability range of the added random
noise. Variables whose stability lies within the dot lines will be
eliminated, and the variables whose stability lies out of the dot lines
are used for PLS calculation. With a comparison of the two figures
in Fig. 3, it can be seen that the two curves are similar to each other.
However, the positive peak around 5980cm™ ' is enlarged by MC-
UVE in Fig. 3(b). Therefore, the variables selected by UVE method
are concentrated on two broad regions around 4450 and 6500cm™ ',
and three narrow regions in the range of 4600— 4900cm '. How-
ever, more variables around 5980cm™ ! and less variables in the
range of 4600— 4900cm™ ' are selected by MC-UVE.

To determine the number of retained variables (V) is the main
aim of this study, which decides the stability and accuracy of the
model. When the number of retained variables is too small, the
robustness and accuracy of the model may be affected due to the
loss of informative variables. On the contrary, if the number of
retained variables is too large, uninformative variables may be
contained in the model and make its performance poor. Therefore,
the variation of the RMSEP of the assessing set with N; is

investigated. Fig. 4 shows the RMSEP obtained with &, from 20 to
200 and a step of 20. For each V;, a PLS model is developed and the
model is then used to predict the assessing set. The mean value and
the standard error (o) of RMSEP through 30 repeated runs are
shown in Fig. 4. It can be seen that, at the beginning, both the mean
value and the standard error are large, then with the increase of NV,
both decrease sharply. Clearly, when N; is 100, the lowest mean
value of RMSEP is obtained. Then, when N; is bigger than 100,
with the increase of N, the mean value of RMSEP increases
gradually with a little fluctuation. This indicates that with lesser
variables, useful wavelengths cannot be completely included, so the
quality of the model is bad. On the other hand, when more variables
are used, irrelevant variables also affect the prediction results.
Therefore, N; = 100 is used for further study.

4.3. Variables selection for data set 2
The stabilities of each variable at wavenumber range 4000—

9000cm ™ ! for sugar data set by UVE and MC-UVE methods are
shown in Fig. 5(a) and (b), respectively. In the figures, the dot lines
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Fig. 3. The stability distribution of each variable for prediction of the nicotine by
the UVE (a) and MC-UVE (b) method. The two dot lines indicate the lower and
upper threshold. The vertical bar with “Bl” indicates the stability range of the
added random noise.
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Fig. 4. Variation of RMSEPs with the number of selected wavelengths for data set 1.
Standard deviation of 30 runs results is plotted as an error bar crossing the mean value.

are determined by N; =200 for MC-UVE and by & = 0.65 for UVE
method (it is an equivalent to N; = 219).

At first, the results for data set 2 are not like the situation for
data set 1. Although the two curves are similar to each other, some
difference can be seen from Fig. 5 that the distribution of the
stability by MC-UVE is slightly more dispersed in full-spectrum
than that by UVE method. This may be explained by the fact that
the sugar content is a total amount of different sugars, such as
glucose, levulose, sucrose and maltose etc. In Fig. 5(a), the
selected variables are concentrated on three broad band around
4258, 5620, and 6000cm ', four narrow wavelength intervals
around 4030, 5088, 5220, and 5324cm 1, and several other
wavenumbers around 4300, 4370, 5027 and 7100cm L
However, in Fig. 5(b), more wavenumbers in the range of
4100-4400cm™ ' are selected, and the narrow peak around
5088cm” ' in Fig. 5(a) was depressed in Fig. 5(b).

With the same way as do for data set 1, Fig. 6 can be obtained,
showing the variation of the RMSEP of the assessing set with the
number of retained variables. It can be seen that, when N; is 200,
the lowest mean value of RMSEP is obtained. So N; =200 is used
for further study. That the /V; for data set 2 is much bigger than that
for data set 1 may also be explained by the complex of sugar
compounds.

4.4. Comparison of the predicted results by MC-UVE-PLS,
UVE-PLS and PLS methods

With the parameters discussed above, MC-UVE-PLS model was
developed to predict the nicotine content of the 61 samples of data
set 1 and the sugar content of the 47 samples of data set 2. The
calculation, including the steps (2), (3), and (4) described above, was
repeated 30 times. The mean RMSEP with their standard deviation
(o) were summarized in Table 1. As comparison, the RMSEPs of
UVE-PLS and common PLS model with the same data sets were
also listed in the table. With a comparison of the results in Table 1, it
is clear that, for both of the two data sets, the three methods produced
similar prediction with the MC-UVE-PLS being slightly better.
However, fewer variables, 100 and 200 for the two data sets,
respectively, are used in the MC-UVE-PLS model.
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Fig. 5. The stability distribution of each variable for prediction of the total sugar by the
UVE (a) and MC-UVE (b) method. The two dot lines indicate the lower and upper
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For a more fair comparison of MC-UVE-PLS and UVE-
PLS, the optimal threshold, i.e., the value of &, for UVE-PLS is
investigated. It is found that when k& = 0.5 and 0.3, for the two
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Fig. 6. Variation of RMSEPs with the number of selected variables for data set 2.
Standard deviation of 30 runs results is plotted as an error bar crossing the mean value.
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Table 1

A comparison of the results obtained by PLS, UVE-PLS, and MC-UVE-PLS

Model Number of variables RMSEP(5)*

Data set 1
PLS 1296 0.17
UVE-PLS 109 (k=0.88) 0.14
MC-UVE-PLS 100 0.14 (0.009)
UVE-PLS-2 466 (k=0.50) 0.14

Data set 2
PLS 1296 1.71
UVE-PLS 219 (k=0.65) 1.68
MC-UVE-PLS 200 1.57 (0.049)
UVE-PLS-2 700 (k=0.30) 1.58

* The RMSEP for MC-UVE-PLS is the mean of 30 repeated runs. o is the
standard deviation of the 30 results.

data sets, respectively, the RMSEP of the assessing data set
reaches a minimum, which corresponds the number of retained
variables 466 and 700, respectively. With the parameters,
RMSEP of the prediction set and the correlation coefficient are
listed in Table 1 (in the line of UVE-PLS-2). It can be seen that
more variables are retained by the optimal threshold of UVE,
but the prediction results remain almost the same.

Stability
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0 200 400 600 800 1000 1200
Wavelet coefficients

Stability

0 200 400 600 800 1000 1200
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Fig. 7. The stability distribution of wavelet coefficients of data set 1 (a) and data
set 2 (b) by MC-UVE. The dot lines indicate the cutoff.

4.5. WI-MC-UVE-PLS method

Due to the characteristic of WT, if wavelet coefficients are used
in the MC-UVE method, more parsimonious and efficient model
should be obtained. Fig. 7(a) and (b) show the stabilities of the
wavelet coefficients of data set 1 and 2, respectively. The cutoff (dot
line) is determined by N; = 50 and 100, respectively. It can be seen
that the stability distribution of wavelet coefficients is much
different from that of the spectra as shown in Figs. 3 and 5. The
stabilities of the largest scale coefficients (1—42) and smaller scales
coefficients (after 300) are poorer than that of middle scales
coefficients. This is because the large scale coefficients represent
the information of background and the small scale coefficients
represent the information of noise. With the stability of Fig. 7, the
variation of the RMSEPs of the assessing set was investigated.
Fig. 8 shows the results of mean RMSEP with their standard
deviation (o) of 30 repeated runs at different number of retained
coefficients. It is clear that, for data set 1, with only 30 coefficients
the prediction result can be as good as that of the MC-UVE-PLS by
using 100 variables. For the data set 2, when 100 coefficients are
used, similar results as that by MC-UVE-PLS using 200 variables
can be obtained. Therefore, with wavelet compression, the MC-
UVE can be significantly improved to produce more parsimonious
and efficient model for NIR analysis.
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coefficients for data set 1 (a) and data set 2 (b). Standard deviation of 30 runs
results is plotted as an error bar crossing the mean value.



194 W. Cai et al. / Chemometrics and Intelligent Laboratory Systems 90 (2008) 188—194

Table 2
Results obtained by WT-MC-UVE-PLS with different number of coefficients
Data set Number of coefficients RMSEP(5)*
Data set 1 30 0.13 (0.005)
40 0.13 (0.003)
50 0.13 (0.001)
Data set 2 60 1.64 (0.054)
80 1.63 (0.048)
100 1.60 (0.060)

% The RMSEP for MC-UVE-PLS is the mean of 30 repeated runs. o is the
standard deviation of the 30 results.

For further investigation of the WT-MC-UVE method, the
prediction sets of the two data sets were predicted with the WT-
MC-UVE-PLS model. Table 2 lists the results. Compared with
the results in Table 1, it can be found that similar results are
obtained even if less variables are used.

5. Conclusions

A modification of the UVE method, named as the MC-UVE
method, for variable selection in NIR analysis was proposed
based on an integration of the Monte Carlo technique and UVE
method. The method calculate the stability of variables with a
large number of PLS coefficients obtained by different training
subset determined with MC technique, and then perform the
variables selection according to the stability. With applications
of the method for analysis of nicotine and sugar contents in
tobacco samples, it was proved that the proposed method is an
efficient tool. Equivalent or slightly better results can be
obtained compared with full-spectral PLS and UVE methods.
Furthermore, when it is combined with wavelet transform, the
method can produce more parsimonious and efficient model.
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