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Model population analysis for
variable selection
Hong-Dong Lia, Yi-Zeng Lianga*, Qing-Song Xub and Dong-Sheng Caoa

To build a credible model for given chemical or biological or clinical data, it may be helpful to first get somewhat
better insight into the data itself before modeling and then to present the statistically stable results derived from a
large number of sub-models established only on one dataset with the aid of Monte Carlo Sampling (MCS). In the
present work, a concept model population analysis (MPA) is developed. Briefly, MPA could be considered as a general
framework for developing new methods by statistically analyzing some interesting parameters (regression coeffi-
cients, prediction errors, etc.) of a number of sub-models. New methods are expected to be developed by making full
use of the interesting parameter in a novel manner. In this work, the elements of MPA are first considered and
described. Then, the applications for variable selection and model assessment are emphasized with the help of MPA.
Copyright � 2010 John Wiley & Sons, Ltd.
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Live with the data before you plunge into modeling.

Leo Breiman, Statistical Science, 2001(16), Page 201

1. INTRODUCTION

Statistical learning and modeling plays a central role in the fields
of data mining and artificial intelligence, intersecting with many
disciplines. By learning from data in a supervised or unsupervised
way, one can derive a mathematical model which in itself
possesses some useful information on the patterns or trends of
the data. For an established model, what concerns us more is, in
most of the cases, it is not the fitting ability [1] but the prediction
ability which indicates to what extent the model can generalize
well when fed with new samples that have never been seen by
the model. To obtain a well-generalized model, the number of
variables included in the model is, from the parsimonious
perspective, required to be as small as possible because
overfitting may be brought about if a model contains too many
redundant and/or uninformative variables.
Recently in the 11th Scandinavian Symposium on Chemo-

metrics (SSC11), Professor Bro performed a live simulation
experiment and got very counter-intuitive result. He first
randomly produced a data matrix of size 100� 200. Then
50 samples are also randomly chosen and assigned the class label
‘0’, while the remaining 50 samples are assigned the class label ‘1’.
Finally, partial least squares linear discriminant analysis (PLSLDA)
[2–5] was employed to classify the two classes of samples.
Surprisingly, for each replicate simulation, the two classes of
samples are classified very well. The fact that randomly produced
binary classification data with no between-class difference can be
classified very well aroused the interests of the SSC11 participants
significantly. What is the philosophy of the classification? Is it a
pitfall or is there anything we did not paymuch attention to [6,7]?
Is there anything connecting with the overfitting, since, in his

example, the number of variables (200) is much larger than that
of samples (100).
However, such kind of high-dimensional data are always

encountered by us in practice. In the field of OMICS study, such as
genomics [8–10], proteomics [11,12] and metabolomics [13,14],
the routinely produced analytical data are usually of very high
dimension. Let us see some examples first: (1) a microarray
experiment on only one gene chip can produce the expression
profile of over 1 000 000 genes, (2) the data of a protein mixture
sample subjected to MALDI-TOF experiment can be of over
10 000 dimensions and (3) in metabolomics study, the NMR [13]
data or liquid chromatography/mass spectroscopy (LC/MS) or Gas
chromatography/mass spectroscopy (GC/MS) are also high
dimensional. As known, one heated topic in OMICS is to identify
the potential biomarker pattern [15–18], which can be used to
discriminate the patients from the controls or to qualitatively
characterize the physiological state of a patient [19,20]. However,
it is usually very difficult to screen out the informative biomarkers
from such a large pool of candidates due to the fact that there
exists too much redundant and/or interfering information in such
kind of data. Therefore, seeking an efficient variable selection
method to reduce the redundancy of the data is an immediate
need for establishing a model with high performance because
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fewer variables could greatly reduce the risk of overfitting.
Moreover, how to comprehensively assess the performance of
the selected variables is also of great interest [21].
The classical method for variable selection consists of, but is

not limited to, forward step-wise, backward elimination and
stage-wise methods. Some recently developed methods, such as
Lasso [22], least angle regression (LAR) [23] and elastic net (EN)
[24], also prove to be effective for variable selection for
high-dimensional data. One common feature of these methods
is that they try to select a fixed subset of variables for a given
dataset, without considering the influence of variation in samples
for the selection of variables. Thus, it is possible that there could
be a problem due to a random selection of variables. One feasible
remedy to this problem is to establish variable selection methods
by incorporating the Monte Carlo Sampling (MCS) technique.
Based on MCS, some useful methods, e.g. Monte Carlo
uninformative variable selection (MCUVE) [25,26] and random-
ization test (RT) [27] method, are developed and got successful
applications. These MCS-incorporated methods mainly work in
three steps: (1) randomly drawing a great number of subsets of
samples, e.g. 1000 subsets, by sampling with or without
replacement from the original training set; (2) building a
calibration model for each sub-dataset and (3) collecting the
interesting output of all the models for further analysis. Clearly,
such variable selection methods share one common feature that
they are rooted in the analysis of a ‘population’ of MCS-derived
models, which may be a key factor that accounts for their
outstanding performance. Therefore, one may infer that a
‘population’ of models may contain some comprehensive
information on the data. So, it could be expected that more
comprehensive results for variable selection or for model
assessment could be achieved if one examines the interesting
outputs of the ‘population’ of models with a statistical eye.
Motivated by the idea of statistically analyzing the outputs of

MCS-derived ‘population’ of models, a new concept called model
population analysis (MPA) is developed in the present work. It is
expected that the MPA-based method could provide some
comprehensive insights into the data because it allows for
analyzing some interesting outputs of a large number of models
in a statistical way. One typical MPA-based method developed for
outlier detection could be seen in Reference [28] where outliers
could be identified by examining the distribution of prediction
errors of each sample. The current work is focused on MPA for
variable selection and assessment. The elements of MPA are first
generalized and described followed by two applications of MPA to
illustrate (1) the necessity of variable selection and (2) the necessity
of model comparison by examining prediction errors’ distribution.

2. THE ELEMENTS OF MPA

To give an overview of MPA, the outline of MPA is first introduced
which is shown in Figure 1. It works mainly in three successive
steps: (1) obtain a sub-dataset by MCS; (2) establish a sub-model
for each sub-dataset; (3) statistically analyze some interesting
outputs of all the sub-models.

2.1. Monte Carlo sampling for a sub-dataset

Sampling is a key tool in statistics which allows data analysts to
repeatedly sample, with or without replacement, from the
original dataset to create replicate datasets from which the
interesting unknown parameters could be estimated. Generally,

sampling can be divided into two types. One is sampling without
replacement. The other is sampling with replacement, which has
another more popular name ‘bootstrap’.
For a given dataset (X, y), suppose the designmatrix X contains

m samples in the rows and p variables in the columns and the
response vector denoted by y is of order m� 1. The number of
MCS for an algorithm is set to N. With such a setting, one can draw
N sub-datasets from N MCS using either sampling without
replacement or bootstrap strategy. The sampled N sub-datasets
are denoted by (Xsub, ysub)i, i¼ 1, 2, 3, . . ., N. Note that sampling
only serves as a tool for drawing sub-datasets in the context of
MPA. The key point of MPA lies in the third element which will be
discussed below.

2.2. Establishing a sub-model for each sub-dataset

For each sub-dataset (Xsub, ysub)i, one can establish a sub-model,
say fi(X). Then, the collection of all the sub-models can be
denoted as

C ¼ ðf1ðXÞ; f2ðXÞ; f3ðXÞ; . . . ; fNðXÞÞ (1)

It can be inferred that each sub-model may provide some local
information on the data because it is built only on a part of
samples (maybe we can call it a data window) drawn from the

Figure 1. The outline of MPA. Briefly, MPA consists of three steps: (1)
obtain a sub-dataset by MCS; (2) establish a sub-model for each sub-

dataset; (3) statistically analyze some interesting output of all the sub-

models. N is the predefined integer, e.g. 1000.
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whole dataset. Therefore, all the sub-models may jointly provide
some comprehensive information on the whole data.

2.3. Statistically analyzing some interesting outputs of all
the sub-models

After training a ‘population’ of sub-models, we come to the most
important point of MPA that how can one statistically analyze the
outputs of all the sub-models to extract some information for
achieving some special goal, e.g. outlier detection or variable
selection. It should be admitted first that it is really difficult for us
to give a clear outline on how to aggregate and analyze the
interesting outputs of each sub-model because it is deemed to be
a problem-dependent procedure. That is to say, one should make
different strategies to analyze the outputs of all the sub-models
when faced with different problems. The readers are referred to
our previous work [28] where the proposed strategy for outlier
detection, based on statistically analyzing the distribution of the
prediction errors of each sample, could be well reformulated into
the framework of MPA.

3. DATASETS

3.1. Simulated data

In order to investigate the rationale behind the unbelievable
classification result obtained by PLSLDA from the design of Prof.
Bro, 10 groups of datasets of the same number of samples but of
10 different dimensions are randomly produced as Prof. Bro did.
Each dataset contains 100 samples. The number of variables of
each dataset is set to 5, 10, 20, 50, 100, 200, 500, 1000, 2000 and
5000. The class label for each sample is randomly assigned. For
each dimension, 100 replicates are simulated to avoid coinci-
dence and obtain the statistically stable results based on MPA.
This study is aimed at investigating how the classification
performance of PLSLDA is influenced by the dimension by
systematically analyzing the ‘population’ of models established
on the datasets of different sizes.

3.2. Colorectal cancer data

The colorectal cancer data include 64 cancer and 48 control
samples. The measured MALDI-TOF serum protein profiles contain
16331m/z values covering the domain of 960–11163 Dalton. The
mass spectra for all the 112 samples are shown in Figure 2. See
Reference [29] for detailed information on these data.

4. RESULTS AND DISCUSSION

4.1. Simulated data

Theoretically speaking, themisclassification error of any classifier on
all the simulated datasets should be about 0.50 due to the fact that
there is no between-class difference for each variable. For the
balanced datasets simulated in the present work, any classifier
which achieves a fitted error significantly lower than 0.5 is
overfitted. But how can one detect whether the classifier is
overfitted? In the present study, Monte Carlo Cross Validation
(MCCV) [30] is taken to detect whether the built PLSLDA classifier is
overfitted or not because MCCV possesses some advantages, e.g.
asymptotical consistence, compared to ordinary cross validation.
For each dimension, the MCS technique is used to first

randomly obtain a ‘population’ of datasets (100 replicate datasets

here). Then for each replicate dataset, MCCV is taken to
determine the optimal number of latent variables (nLV). The
nLV, MCCV error and Q2 are recorded. Then PLSLDA is utilized to
classify the data. The fitting errors, defined as the ratio of the
incorrectly classified samples to the total samples, and the
corresponding R2 are also recorded. Finally, the mean value and
standard deviation for each performance parameter of the 100
replicate data of the same dimension are calculated.
Table I presents all the results of the 10 different groups of

datasets. From Table I, it can be found that the fitting errors/R2

increase monotonously when adding the dimension. This is an
indication that the data are becoming more and more seriously
overfitted as the number of variables increases. Amore important
finding from this study is that overfitting will obviously decrease if
the variable to sample ratio is smaller than 1:3, which is in
agreement with the empirical rule in variable selection that ‘the
number of samples should be at least three times larger than that
of variables’. Therefore, the results may serve as numerical
evidence of the rule. Meanwhile, attention should be paid to the
nLV used in the PLSLDA model. The nLV for all the data is very
small, about 2 to 3. This fact may reflect that PLSLDA is so
powerful for extracting the y-correlated latent variable that
overfitting can easily occur.
To intuitively view how overfitting occurs when the dimension

increases, the 2D score plots of six different dimensional data are
shown in plots A, B, C, D, E and F of Figure 3, respectively.
Apparently, the intrinsically inseparable data can be classified
very well as long as they contain sufficient variables. Specifically
in the case of dimension equal to 2500, all the samples can be
classified into only one latent variable direction. It may be
inferred from our results that including too many variables into a
model is dangerous in that overfitting may be caused. Therefore,
it is recommended that variable selection should be done before
plunging into modeling your data.
Besides, one can see from Table I that the MCCV error for all the

dataset is equal to or slightly lower than 0.50. This result
demonstrates that MCCV is an effective method for estimating
the prediction error and further for model assessment although
the estimated error is somewhat optimistic. It should be noted
that probably ordinary cross validation, e.g. leave-one-out CV,
would work as well for the simulated datasets. However, MCCV
possesses some advantages, such asymptotical consistency, over
the ordinary cross validation [30].

Figure 2. The MALDI-TOF serum profiles of control and cancer samples.
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Summing up, by systematically analyzing the ‘population’ of
models established on the datasets of different sizes, it is
illustrated that variable selection is necessary for avoiding
overfitting, especially when dealing with the high-dimensional
data which are usually faced by the OMICS practitioners. Also,
the appropriate variable to sample ratio is indicated by this
study.

4.2. Colorectal cancer data

These proteomic data are utilized to demonstrate that better
performance could be achieved by only including a subset of
variables when modeling. In the present work, two methods are
employed to perform variable selection coupled with PLSLDA.
One is MCUVE, the other is the recently proposed variable

Table I. The results on the simulated datasets using PLS-LDA with the number of MCS set to 100

Dimension Fitting errors R2 MCCV errors Q2 nLV

5 0.41� 0.04 0.04� 0.03 0.49� 0.06 0.01� 0.02 2.01� 1.18
10 0.38� 0.04 0.07� 0.04 0.51� 0.05 0.01� 0.02 1.97� 1.16
20 0.31� 0.04 0.15� 0.06 0.49� 0.05 0.01� 0.01 2.22� 1.22
50 0.20� 0.06 0.37� 0.14 0.49� 0.05 0.01� 0.02 2.34� 1.33

100 0.08� 0.07 0.71� 0.23 0.48� 0.05 0.01� 0.01 2.40� 1.29
200 0.04� 0.04 0.87� 0.16 0.49� 0.05 0.01� 0.01 2.32� 1.30
500 0.01� 0.01 0.98� 0.04 0.49� 0.05 0.01� 0.02 2.32� 1.28

1000 0.00� 0.00 1.00� 0.01 0.49� 0.06 0.01� 0.02 2.11� 1.21
2000 0.00� 0.00 1.00� 0.00 0.49� 0.05 0.01� 0.01 2.16� 1.18
5000 0.00� 0.00 1.00� 0.00 0.49� 0.05 0.01� 0.02 1.91� 1.09

Figure 3. The score plots for the simulated data of six-different dimensions using PLSLDA.
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selection procedure, called competitive adaptive reweighted
sampling (CARS) [31]. To begin with, the algorithms for both
MCUVE-PLSLDA and CARS-PLSLDA are briefly introduced first.
MCUVE-PLSLDAworks mainly in three steps: (1) randomly draw

N sub-datasets from the original data; (2) build a PLSLDA model
for each sub-dataset and (3) collect the variable coefficients
(interesting parameters) of all the N models and calculate a
Reliability Criterion (RC) value for each variable. Finally the RC
value, serving as a variable importance index, is taken to rank the
variables.
Assuming that the number of sampling runs is set to N, then in

the ith sampling run, CARS-PLSLDA works in the following three
sequential steps:

(1) A predefined ratio (e.g. 80%) of the samples is randomly
chosen to build a PLSLDA model using the retained variables
in the (i�1)th sampling run.

(2) Based on the regression coefficients of the constructed
model, only a ratio, denoted as ri, of variables with large
absolute coefficients is first retained. Here, ri is computed
using the exponentially decreasing function (EDF) ri¼ ae�ki

.

where a and k are two constants, which can be automatically
determined. Then, adaptive reweighted sampling (ARS) tech-
nique is employed to further remove some uncompetitive
variables from the EDF-based retained subsets. Finally, a
subset of variables, denoted as Vi, is selected.

(3) Compute the misclassification error of Vi using K-fold cross
validation.

Repeat the above procedure for N times, CARS-PLSLDA can
sequentially select N subsets of variables, i.e. (V1, V2, . . ., Vn), from
N MCS runs in an iterative and competitive manner. However, it
should be mentioned that CARS-PLSLDA, like MCUVE-PLSLDA,
also suffers from the disadvantage that it cannot guarantee to
reproduce the result with the same tuning parameters. The
source codes for implementing CARS-PLSLDA in both MATLAB
and R (for Linux and Windows) can be freely available at: http://
code.google.com/p/cars2009/.
First, MCCV, taking all the 16331m/z values as input, is

employed to evaluate the prediction ability of the PLSLDA
classifier and simultaneously determine the optimal number of
latent variables (nLV). Then, the PLSLDA classifier is established to
distinguish the cancer samples from the controls. The sensitivity
(Se), specificity (Sp) and overall accuracy (Acc) of both fitting and
MCCV are presented in Table II. It could be seen that all these
performance parameters, including Se, Sp and Acc, are relatively
high, which might be an indication that the data are not
overfitted or are only overfitted to a slight extent. The reason
might be that (1) the full MALDI-TOF spectrum includes highly
discriminating variables and (2) PLS has the intrinsic capability to

extract the y-relevant latent variable while simultaneously
suppressing the interference brought about by the uninformative
or noisy variables. But whether a more parsimonious also with
better performance model can be found by variable selection?
Here, MCUVE-PLSLDA and CARS-PLSLDA are applied to select

the potential discriminating variables, respectively. All the
performance parameters are presented in Table II. By MCU-
VE-PLSLDA, 17 variables are selected. Although the fitting results
based on the 17 variables are equal to those of the full spectrum
model, the predictions are improved. Using CARS-PLSLDA, only
five variables are selected from such a large pool of 16 331
candidates. Clearly, both MCUVE-PLSLDA and CARS-PLSLDA
outperform the full spectrum model in terms of Se, Sp and Acc.
The variable subset selected by CARS is more discriminating,
which may imply that the full spectrum contains many
uninformative variables and these variables have negative effect
on the prediction ability of themodel. Moreover, compared to the
results reported by Alexandrov et al. [29] (Acc: 0.973, Se: 0.984 and
Sp: 0.958), our results are also better. Considering the high
discriminating ability, the five variables may jointly serve as
biomarker pattern to facilitate the diagnosing of the disease.
Further, in order to comprehensively compare the perform-

ance of the full spectrum model, MCUVE-PLSLDA and
CARS-PLSLDA, 500 sub-datasets (95% of all the 112 samples)
are first randomly produced. For each sub-dataset, the prediction
error based on MCCV is computed. Then, the histograms of
MCCV-based prediction ability in terms of accuracy, sensitivity
and specificity are calculated and shown in Figure 4. For the sake
of robustness, the median and the difference between
0.25-quantile and 0.75-quantile of MCCV-based prediction
accuracy, sensitivity and specificity for the three cases are given
in pair: 0.943(0.006), 0.943(0.008), 0.944(0.007) for full spectrum
classifier, 0.959(0.005), 0.970(0.007), 0.946(0.008) for the MCU-
VE-PLSLDA and 0.987(0.002), 0.997(0.002), 0.975(0.004) for
CARS-PLSLDA, respectively. Obviously, the performance of the
PLSLDA classifier using the variables selected by MCUVE and
CARS is improved. The result further implies that conducting
variable selection before modeling is very necessary for building
a model with better performance.
Note that the distributions of Acc, Se and Sp for different

methods overlap to some extent (especially the distribution of Sp
between all variable models and MCUVE), which suggests that
wrong conclusions may be obtained by chance if one compares
the performance of different methods based on only one
sub-dataset or a single splitting of the data. However, this
problem could be overcome by examining the distribution of
prediction errors resulted from a ‘population’ of sub-models
because the distribution is statistically stable. Therefore, it might
be more appropriate to perform model assessment or compari-
son by examining the distribution of prediction errors.

Table II. The results on the MALDI-TOF serum protein profile data using MCUVE-PLSLDA and CARS-PLSLDA

methods nVAR Fitting MCCV nLV

Acc Se Sp Acc Se Sp

PLSLDA 16331 0.973 0.984 0.958 0.946 0.945 0.947 3
MCUVE-PLSLDA 17 0.973 0.984 0.958 0.962 0.970 0.951 3
CARS-PLSLDA 5 0.991 1.000 0.979 0.988 0.998 0.976 2
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5. CONCLUSIONS

In the present work, a new concept MPA is developed and the
elements of MPA are introduced first followed by two case
studies. The necessity of variable selection is demonstrated in the
simulation study. More importantly, the simulation study
suggests that overfitting will obviously decrease if the variable
to sample ratio is smaller than 1:3, which is in agreement with the
empirical rule in variable selection that ‘the number of samples
should be at least three times larger than that of variables’. The
proteomic study indicates that it may be more appropriate to
perform model comparison by examining the distribution of
predictive errors resulted from a large number of randomly
produced sub-dataset. Our later work is focused on establishing
new variable selectionmethods by strictly implementing the idea
of MPA. It is expected that MPA will find its applications in the
fields of variable selection and model assessment.
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