Model Population Analysis

(模型集群分析)

Hong-Dong Li and Yi-Zeng Liang

Ihdcsu@gmail.com

Aug., 2011

Outline

Context

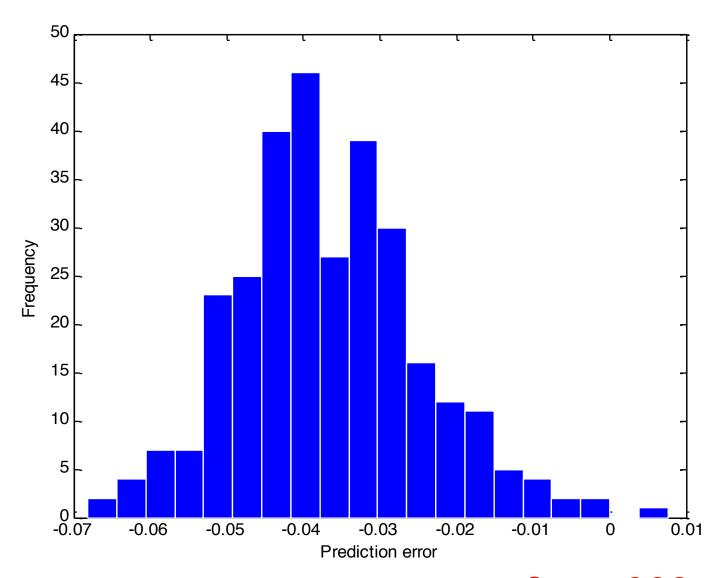
Model population analysis (MPA)

Variable assessment using MPA

Context

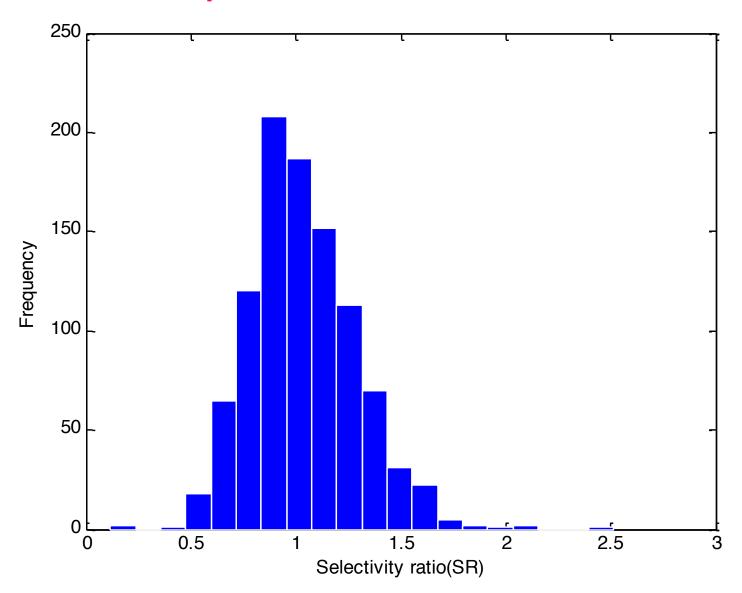
- Outlier detection
- Variable assessment
- Model performance
- Ensemble learning

Outlier



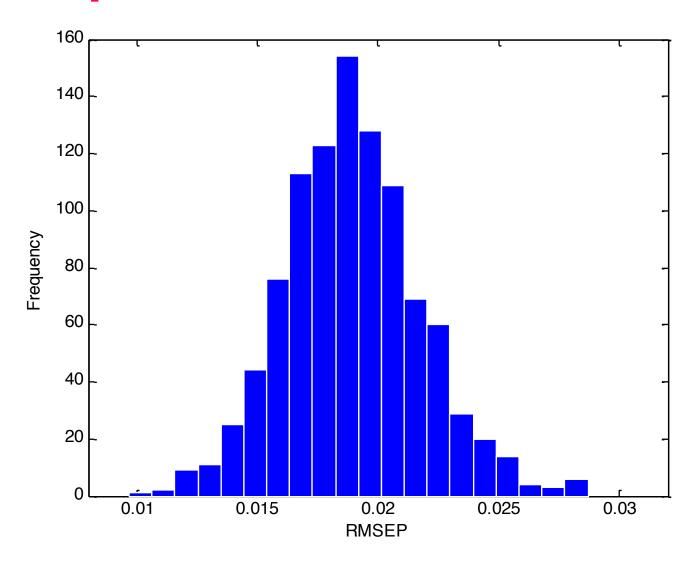
Corn data: Prediction errors of a test sample from 303 models

Variable importance



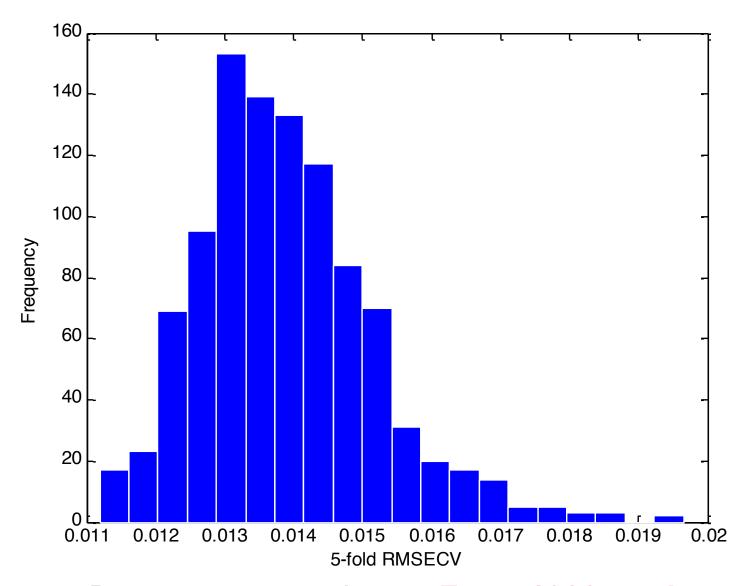
T2DM data (n=90, p=21), 70% samples, **from 1000 models**

Model performance: test set



Data: corn m5 moisture. From1000 models

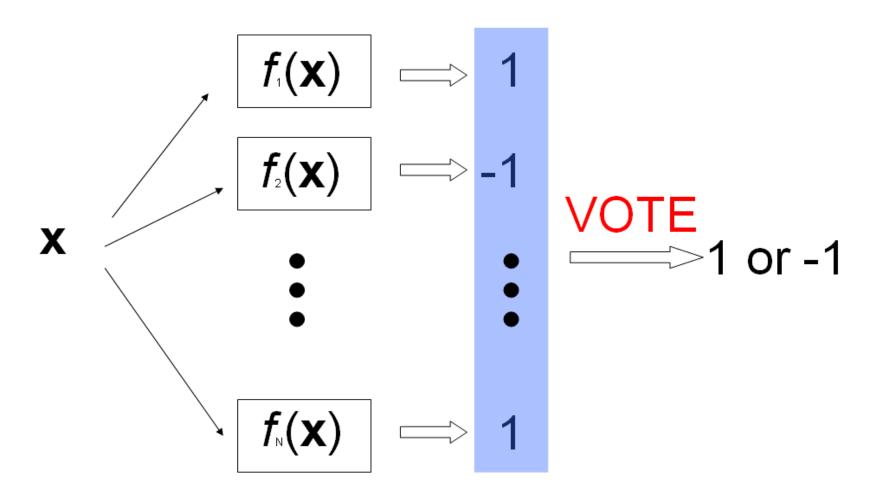
Model performance: cross validation



Data: corn m5 moisture. From 1000 models

Ensemble learning

Bagging, Boosting and Random forest



A population of N models

Conclusions

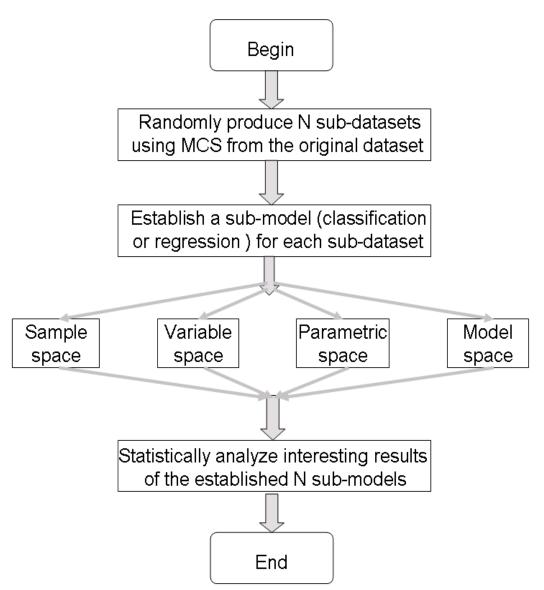
- ◆ Prediction errors or variable importance or model performance is data-dependent
- **♦**A single number is not sufficient to characterize...
- ♦ Hence we suggest to use the distribution of ...

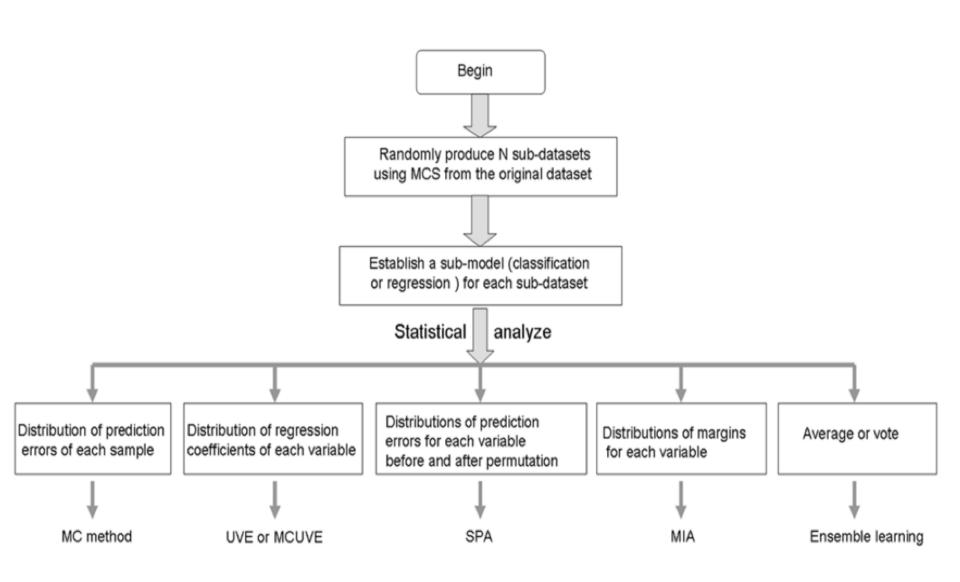
A new concept Model Population Analysis

Hong-Dong Li, Yi-Zeng Liang, Qing-Song Xu, Dong-Sheng Cao, model population analysis for variable selection, *Journal of Chemometrics* **2009**, 24, (7-8), 418-423

What is Model Population Analysis?

A general framework for developing data analysis methods





Our work on model population analysis

- Li, H.-D., Liang, Y.-Z., Xu, Q.-S. & Cao, D.-S. Model population analysis for variable selection. Journal of Chemometrics 24, 418-423 (2009).
- [2]. Cao, D.S., Liang, Y.Z., Xu, Q.S., Li, H.D. & Chen, X. A New Strategy of Outlier Detection for QSAR/QSPR. J. Comput. Chem. 31, 592-602 (2010).
- [3]. Li, H.-D. et al. Recipe for revealing informative metabolites based on model population analysis. Metabolomics 6, 353-361 (2010).
- [4]. Li, H.-D. et al. Recipe for Uncovering Predictive Genes using Support Vector Machines based on Model Population Analysis, http://doi.ieeecomputersociety.org/10.1109/TCBB.2011.36. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2011).
- [5]. Wang, Q., Li, H.-D., Xu, Q.-S. & Liang, Y.-Z. Noise incorporated subwindow permutation analysis for informative gene selection using support vector machines. Analyst 136, 1456-1463 (2011).
- [6]. Li, H.-D., Liang, Y.-Z &. Xu, Q.-S, Model population analysis and its applications in chemical and biological modeling, under review
- [7]. Li, H.-D., Liang Y.-Z&Xu, Q.-S, Variable complementary network: a novel approach for identifying disease related variables and their mutual associations, in preparation
- [8]. Li, H.-D., Liang Y.-Z&Xu, Q.-S, statistical model comparison via model population analysis, an invited book chapter, under review

How to implement MPA?

1.Monte Carlo Sampling to obtain sub-datasets

Monte Carlo Sampling

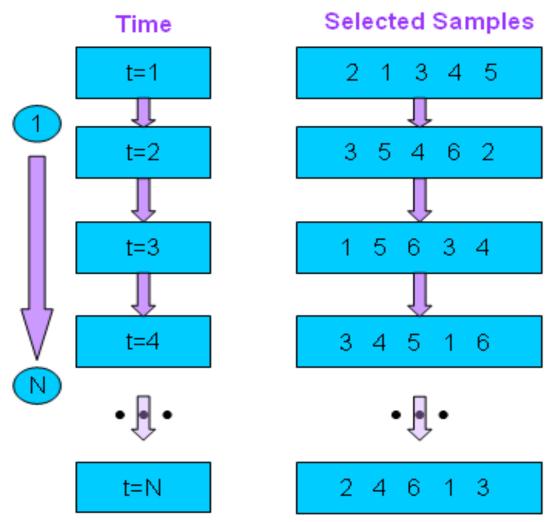
Jacknife

Bootstrap

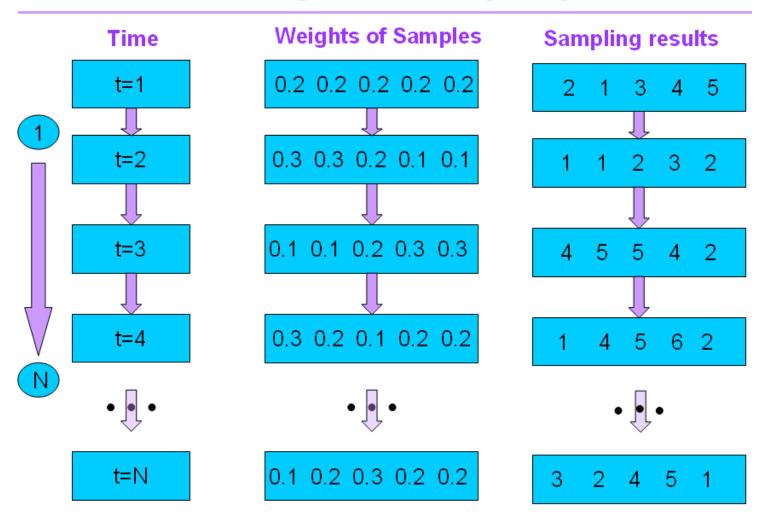


Jacknife

---Suppose we have 6 samples, denoted by 1, 2, 3, 4, 5 and 6



Weighted sampling



Suppose we have 5 samples, denoted by 1, 2, 3, 4 and 5

2. Build N sub-model for all N sub-datasets

Partial least squares

Support vector machines

Classification And Regression Trees

. . .

- 3. Statistical analysis of an interesting output of all the N sub-models
 - Prediction residual of a sample
 - Regression coefficient of a variable
 - ◆Variable importance
 - Model-related parameter

Model Population Analysis for variable assessment

Three new algorithms based on MPA:

SPA: Subwindow Permutation Analysis

MIA: Margin Influence Analysis

CIMPA: Condtional importance

To illustrate that:

Different kinds of designs for statistical analysis of some interesting parameters will result in different algorithms.

Subwindow Permutation Analysis

Motivated by:

- >Random forest
- ➤ Model Population Analysis
- > Detecting synergistic effect

HD Li, MM Zeng, BB Tan, YZ Liang, QS Xu, DS Cao, Recipe for revealing informative metabolites based on model population analysis, *Metabolomics* **2010**, 6, (3), 353-361.

What is permutation?

TD	1	1	
ID	normal	permuted	permutea
1	0.75	0.47	0.53
2	0.67	0.02	0.20
3	0.20	0.45	0.85
4	0.93	0.85	0.02
5	0.53	0.93	0.67
6	0.42	0.67	0.93
7	0.45	0.75	0.42
8	0.85	0.42	0.47
9	0.47	0.20	0.45
10	0.02	0.53	0.75

Lindgren, F., Hansen, B., & Karcher, W. (1996). Model validation by permutation tests: Applications to variable selection. *Journal of Chemometrics*, 10, 521–532.

Variable importance in Random Forest (RF)

Error_normal=RF(Xtest)

Error_permuted=RF(Xtest_i)

Variable importance; = Error_permuted-Error_normal

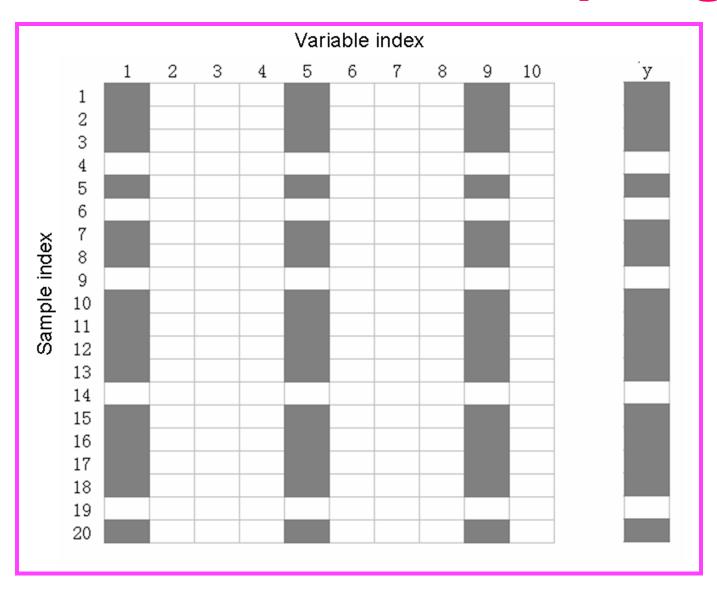
Breiman, L. (2001). Random forests. *Machine Learning*, 45, 5–32.

SPA is developed

by exactly following the three elements of MPA

- (1) sub-dataset sampling (N)
- (2) sub-model building (N)
- (3) statistical analysis of the interesting parameters of all the N models.

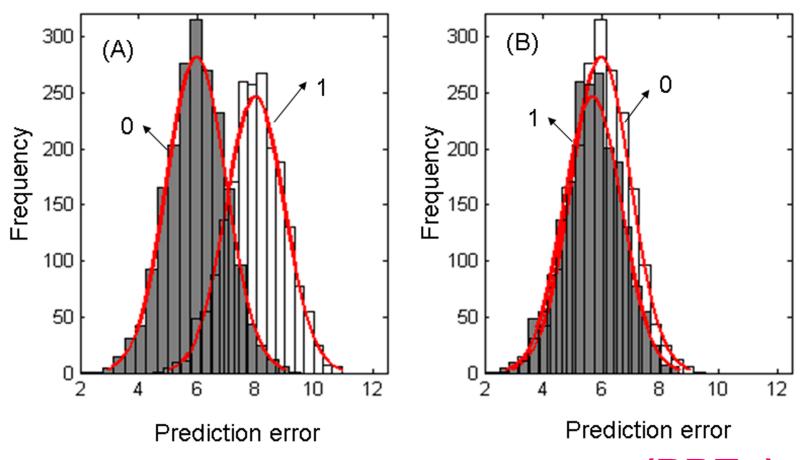
1. Sub-dataset sampling



2. Build N sub-models

ID	variable			Model	Test set	Prediction on test sets	
1	1	3	5		Xtest1	NPE PPE1 PPE3 PPE5	
2	7	2	6		Xtest2	NPE PPE7 PPE2 PPE6	
3	9	1	10		Xtest3	NPE PPE9 PPE1 PPE10	
N	6	4	8	MN	XtestN	NPE PPE6 PPE4 PPE8	

3. Statistical analysis of the prediction errors of the N sub-models



Peak 1: Permuted prediction errors (PPEs)

Peak 0: Normal prediction errors (NPEs)

How to compare the paired distributions?

We use the nonparametric Mann-Whitney U test

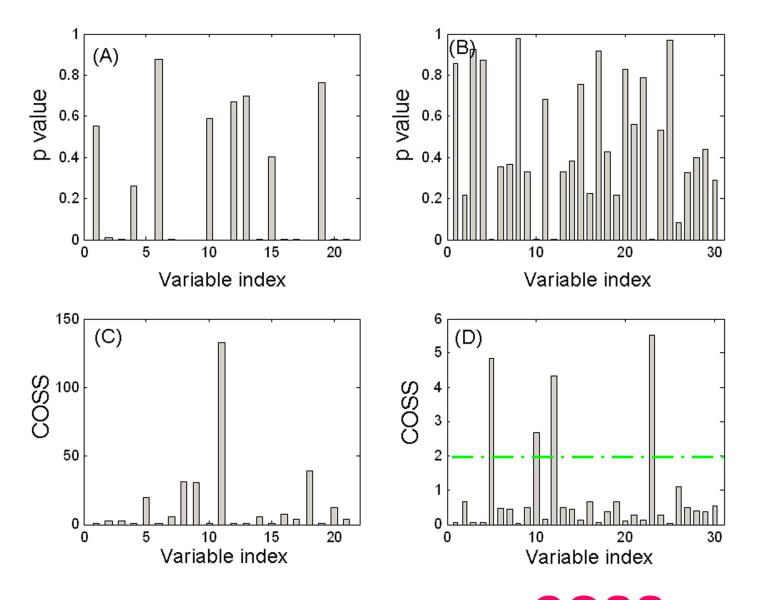
Lead to a COnditional Synergistic Score: COSS

$$COSS = -Log_{10}(p)$$

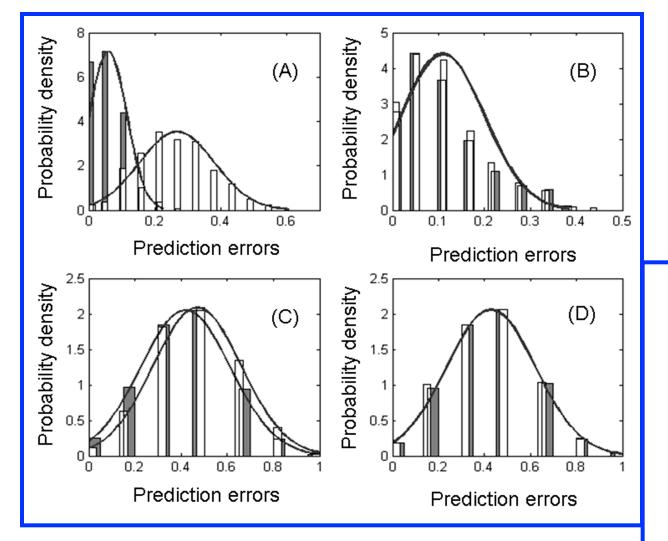
Applications of SPA to

- Type 2 diabetes mellitus data
- Childhood overweight data

Source codes in MATLAB and R can be freely available at http://code.google.com/p/spa2010



SPA-based Conditional P-value and the COSS score

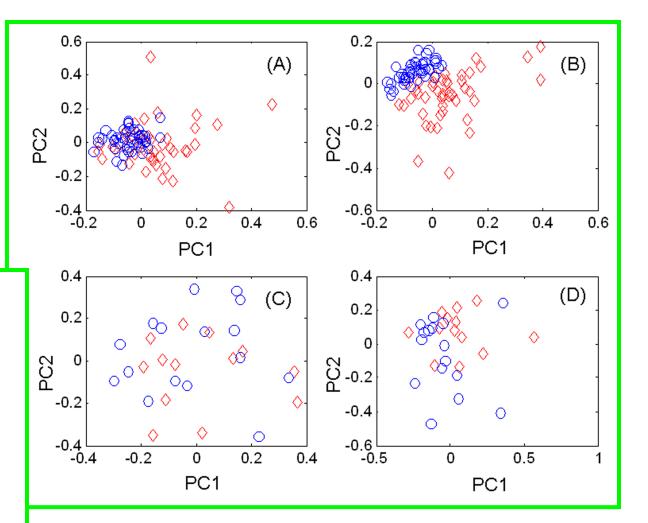


Compare two distributions

Fig. 4 Plot A and B shows the distributions of normal prediction errors (grey bar) and permuted prediction errors (white bar) of an informative metabolite (C18:1n-9, p = 0) and an uninformative one (C16:1n-7, p = 0.8791) for T2DM data, respectively. By analogy, such kind of distributions of an informative metabolite (Palmitic acid, $p = 3 \times 10^{-6}$) and an uninformative one (Leucine, p = 0.9791) for the childhood overweight data are shown in Plot C and D, respectively

Unsupervised

Fig. 5 Plot A and B display the PCA projected samples (circle: normal, diamond: patients) of the T2DM data using all the 23 metabolites and the selected three metabolites by SPA, respectively. Analogously, Plot C and D display the PCA projected samples (circle: normal, diamond: overweight) of the childhood overweight data using all the 30 metabolites and the selected three metabolites by SPA, respectively

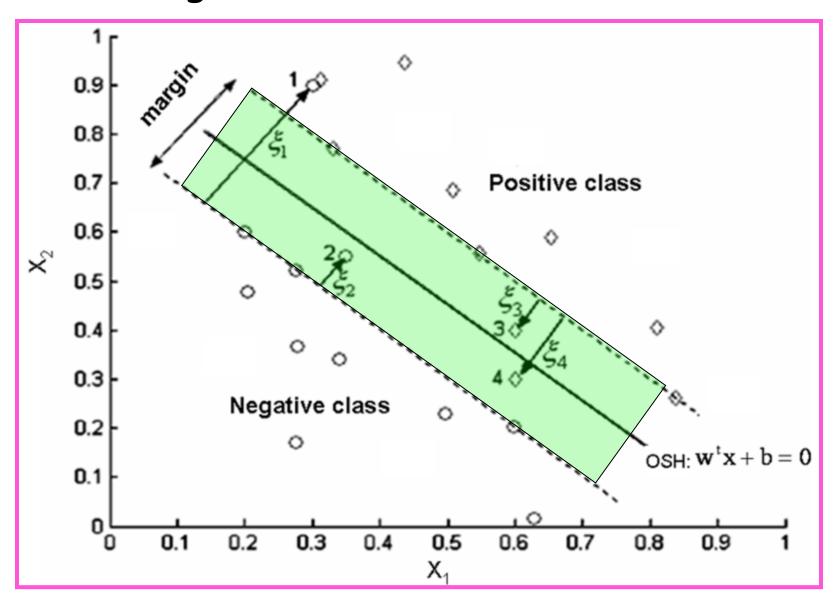


Better separation

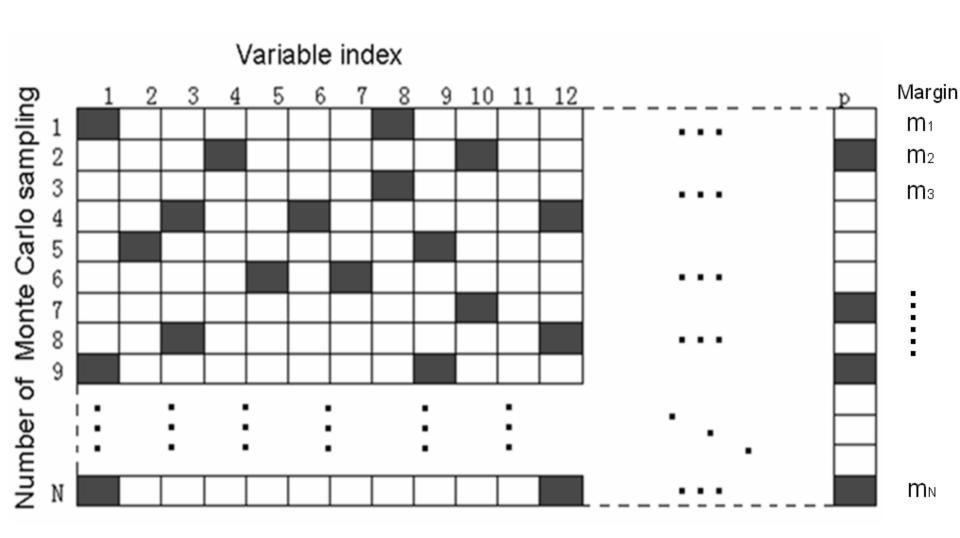
Margin Influence Analysis

Hong-Dong Li, Yi-Zeng Liang*, Qing-Song Xu et al, Recipe for Uncovering Predictive Genes using Support Vector Machines based on Model Population Analysis, *IEEE/ACM Transactions on Computational Biology and Bioinformatics, http://doi.ieeecomputersociety.* org/10.1109/TCBB.2011.36

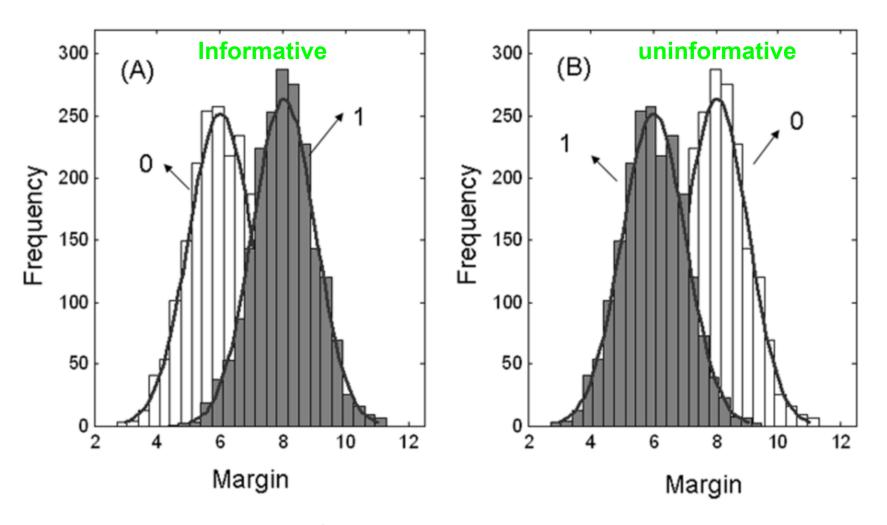
The margin of a SVM model



1 Sub-dataset sampling in variable space2 Build N SVM models



3 Statistical analysis of the margin's distribution

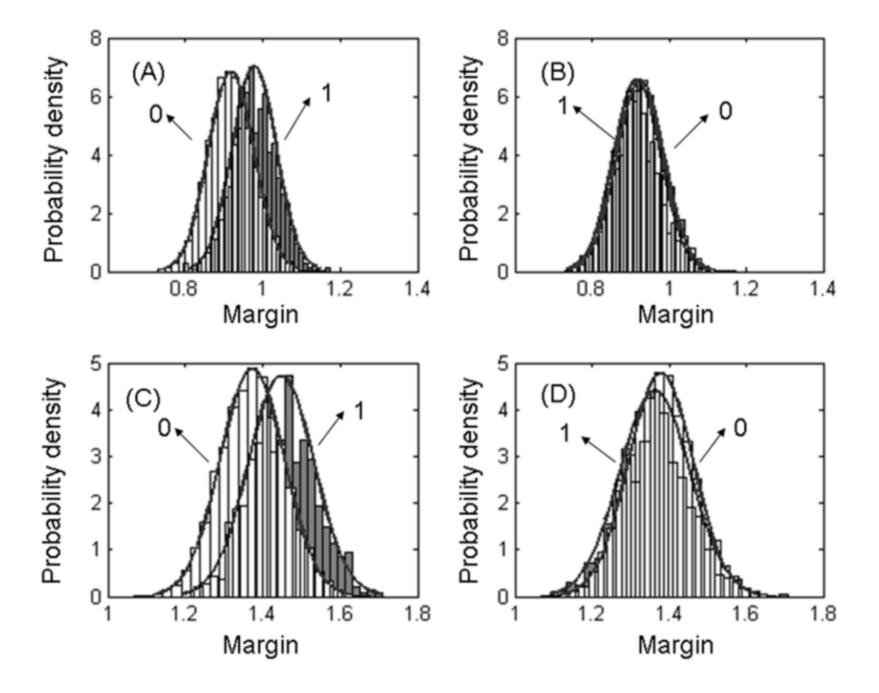


Peak 1: Margins of the Models with the variable included Peak 0: Margins of the Models without the variable included

Applications

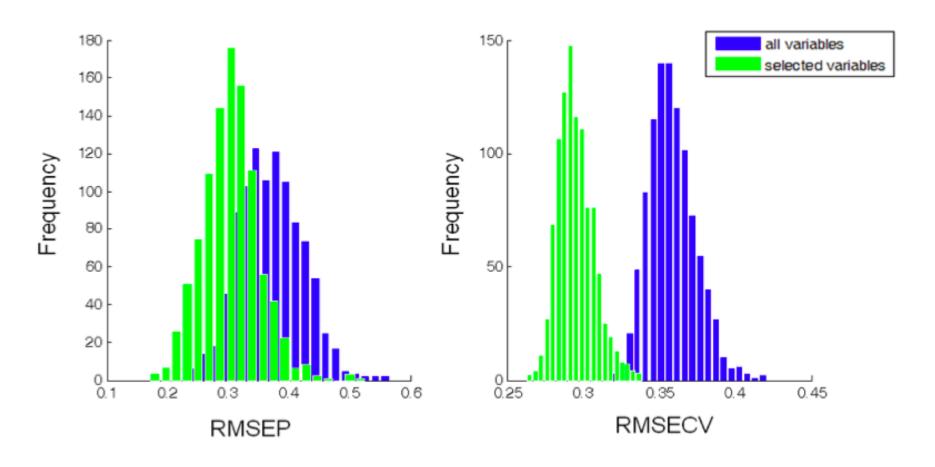
Colon data: 62 x 2000 ≻ Colon data: 62 x 2000

Estrogen data: 49 x 3333



Model Assessment

Model assessment



Li, H.-D., Liang Y.-Z&Xu, Q.-S, statistical model comparison via model population analysis, an invited book chapter, under review

Features of MPA-based methods:

The computing process is random

The final output is stable

For discussion?

Posterior distribution from Bayesian analysis

Theoretical analysis of MPA if possible?

Thank you very much