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Model-population analysis
and its applications in chemical
and biological modeling
Hong-Dong Li, Yi-Zeng Liang, Qing-Song Xu, Dong-Sheng Cao

Model-population analysis (MPA) was recently proposed as a general framework for designing new types of chemometrics and

bioinformatics algorithms, and it has found promising applications in chemistry and biology. The goal of MPA is to extract useful

information from complex analytical systems, so as to lead to better understanding and better modeling of chemical and

biological data.

To give an overall picture of MPA, we first review its key elements. Then, we describe the theories and the applications of

selected methods that focus on the two fundamental aspects in chemical and biological modeling: outlier detection and variable

selection. We highlight the key common principles of these methods and pinpoint the critical differences underlying each

method.
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1. Introduction

A vast amount of data is routinely pro-
duced in chemistry and biology and often
display high complexity (e.g., existence of
outliers, a large number of irrelevant
variables measured, and non-linearity),
rendering their statistical modeling chal-
lenging [1–4]. Specifically, existence of
outliers caused by experimental errors or
other uncontrolled factors would make a
predictive model misleading, so such
models cannot be used to make reliable
predictions [5,6]. Furthermore, chemical
and biological data resulting from modern
high-throughput analytical instruments
have a large number of variables most of
which are irrelevant to or would even
interfere with the problem under investi-
gation [7–10]. Also, the sample size is
comparatively small. This is the so called
‘‘large p, small n’’ problem that has proved
to be very challenging in statistical learn-
ing [2,11,12]. Predictive models built
using all measured variables are quite
difficult to interpret, usually of low pre-
diction accuracy and therefore of little use
in practice. Variable selection is an effec-
0165-9936/$ - see front matter ª 2012 Elsev
tive solution to solve this problem. Indeed,
a large number of methods have been
developed for variable selection and
gained successful applications in chemis-
try and biology {e.g., LASSO [13], elastic
net [11], target projection [14] and CARS
[15]}. Summing up, outlier detection and
variable selection are of substantial
importance in mining information from
complex analytical data. They are the two
most fundamental issues relating to the
statistical modeling of chemical and bio-
logical data.

In outlier detection, samples to be
diagnosed as outliers are always based on
a single number (e.g., Mahalanobis dis-
tance) or a prediction error from only one
model [16]. We argue that characterizing
a sample as an outlier by a single number
is insufficient. A distribution of the crite-
rion selected for assessing the outlying
propensity of a sample, rather than a
single number, should be used. To this
end, we proposed the Monte Carlo (MC)
method, where the distribution of prediction
errors of a test sample resulting from a
population of sub-models is used to eval-
uate whether a sample is likely to be an
ier Ltd. All rights reserved. doi:10.1016/j.trac.2011.11.007
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outlier or not. It was shown that cross-validated esti-
mates of prediction errors after removal of outliers were
significantly lowered [17]. Of note, cross validation plays
a pivotal role in model assessment and selection, and is
widely used in chemistry [18,19] and biology [20,21].
Important developments include double cross validation
[22], MC cross validation [18,23] and repeated double
cross validation [24]. The statistical characteristics (e.g.,
bias and consistency of cross validation) have been
discussed elsewhere [25–27].

In variable selection, variable importance is often as-
sessed by assigning an importance score to each variable
using a selected criterion [14,28], followed by selecting
variables that display high importance scores. We also
argue that assessing variable importance by a single
importance score resulting from a single model is unre-
liable. Indeed, a variety of methods have been proposed
for variable selection {e.g., looking at the distribution of
regression coefficients in uninformative variable elimi-
nation (UVE) [29], its MC extension [30], prediction er-
rors in sub-window permutation analysis (SPA) [31] and
noise-incorporated sub-window permutation analysis
(NISPA) [10], and margin of support vector machines
(SVMs) in margin influence analysis (MIA) [32]}. In
addition, Wongravee et al. proposed to determine
potentially discriminatory variables for supervised self-
organizing maps (SOMs) by analyzing the distribution of
Figure 1. Model-popu
variable rank obtained from 100 training sets generated
using MC sampling [33]. Interestingly, Abeel et al. [34]
showed that the robustness of biomarker selection can be
improved significantly through the analysis of their
complete (weighted) linear aggregation of variable ranks
by running a linear SVM coupled with recursive feature
elimination [35] on multiple bootstrap datasets. Of note,
a Bayesian approach is proposed for gene selection by
analyzing inclusion probability of each gene based on a
large number of sub-models that are drawn from its
posterior distribution using a Markov Chain MC (MCMC)
method [36].

Here, we would like to highlight that these methods
discussed above (e.g., UVE and SPA) implemented the
idea of model-population analysis (MPA) developed in
our previous work [37]. The core of MPA is establishing
data-analysis methods by statistically analyzing the dis-
tribution of an interested outcome of a population of sub-
models derived with the aid of MC sampling {e.g. jack-
knife or bootstrap [25,38]}. Indeed, MPA has gained
wide, successful applications in a variety of fields
[17,19–21,31,32,36]. However, a comprehensive
description of MPA is lacking. To facilitate understand-
ing of MPA, here we first review its basic elements. Then,
we describe and discuss algorithms and applications of
selected MPA-based methods in outlier detection and
variable selections.
lation analysis.
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2. Model-population analysis

MPA was recently proposed as a general framework for
developing data-analysis methods. As depicted in Fig. 1,
MPA works in three steps:
(1) MC sampling (MCS) is used to randomly draw N

sub-datasets (e.g., 10,000);
(2) for each sub-dataset, a sub-model is built; and,
(3) last but not least, an outcome of interest (e.g., pre-

diction errors) of all the N sub-models is statistically
analyzed.

It is important to note that it is the third step, not the
MC sampling, that is the key to MPA. As can be seen in
Fig. 1, the parameters that can be statistically analyzed
are put into four spaces: (1) sample space, (2) variable
space, (3) parametric space and (4) model space. By
analyzing an interesting parameter that is associated
with one of the four spaces, a data-analysis algorithm
can be developed. As an illustrative example, the MC
method [17] for detecting outliers was designed by
studying the distribution of prediction errors of each
sample, which is a parameter associated with sample
space.

2.1. Monte Carlo sampling for a sub-dataset
Sampling is a key tool in statistics, which allows creation
of sub-datasets, from which an interested unknown
parameter could be estimated. Given a dataset (X, y),
assume that the design matrix X contains m samples in
rows and p variables in columns, the response vector
denoted by y is of size m·1, and the number of MC
sampling is set to N. At this setting, N sub-datasets can
be drawn from N MC samplings with or without
replacement. The N sub-datasets randomly sampled are
denoted as (Xsub, ysub)i, i = 1, 2, 3, . . . N.
Figure 2. Methods based on m
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2.2. Establishing a sub-model for each sub-dataset
For each sub-dataset (Xsub, ysub)i, a sub-model can be
built using a selected method [e.g., partial least squares
(PLS) or SVMs or classification and regression tree
(CART)]. Denote the sub-model established as fi (X).
Then, all the sub-models can be gathered into a collec-
tion:

C ¼ ðf1ðXÞ; f2ðXÞ; f3ðXÞ; . . . ; fNðXÞÞ ð1Þ

All these sub-models are expected jointly to provide
comprehensive information on the original data.

2.3. Statistically analyzing an interesting output of all
the sub-models
Statistical analysis of an interesting output (e.g., pre-
diction errors or regression coefficients) of all the sub-
models is the core of MPA. Different designs for the
analysis of different outputs of all the sub-models will
lead to different algorithms. As proof of principle, the
analysis of the distribution of prediction errors has been
shown to be effective in outlier detection [17], whereas
the analysis of the distribution of prediction errors [31]
or regression coefficients [29,30] proves to be useful in
variable selection.
3. Applications of model-population analysis

3.1. Outlier detection
The recognition and the removal of outliers from mea-
sured data is a crucial step before modeling. The inter-
pretability and the predictive performance of a
calibration model built using data with outliers removed
could be improved. A number of algorithms have been
proposed for outlier detection and proved effective. These
odel-population analysis.
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algorithms include, but are not limited to, Mahalanobis
distance, Cook�s distance, minimum-volume ellipsoid
(MVE), random sampling by half-means (RHM) [16], and
the MC method [17]. Among these methods, the MC
method implementing the idea of MPA has been shown
to be promising in identifying both X-outliers and Y-
outliers by analyzing the distribution of prediction errors
of each sample. Fig. 2 shows the MC method, which
comprises three steps, as described below.
(1) A percentage, denoted by r (e.g., r = 0.80), of sam-

ples is selected randomly as a training set. The
remaining samples serve as an independent test
set. This procedure is repeated N times, and N train-
ing sub-sets and N test sub-sets can be obtained.

(2) For each training sub-set, a sub-model is established
and is then used to make predictions on the corre-
sponding test sub-set.

(3) Each sample will be selected into a test set approxi-
mately N(1�r) times by assuming that each sample
is selected with equal probability. So, each sample is
associated with around N(1�r) prediction errors, of
which the mean and the standard deviation can be
computed. By plotting the standard deviation
against the mean of the prediction errors of each
sample, a diagnostic plot can be obtained that will
be used for outlier detection.

Here, the mechanism of the MC method is illustrated
using a benchmark near-infrared (NIR) dataset, the corn
data (http://software.eigenvector.com/Data/index.html).
The NIR spectra measured on an mp5 instrument is used
and the chemical measurement to model is starch con-
centration. PLS is chosen for building a calibration
Figure 3. (Left) The diagnostic plot for outlier detection of the corn-starch d
ple, (B) an X-outlier, and (C) a Y-outlier are selected. (Right) The distribution
three outliers.
model. The number of MC sampling N is set to 1000 and,
at each sampling, 70% samples are randomly selected as
a training sub-set to build a PLS model with nine latent
variables determined using five-fold cross validation.
Using the MC method, a diagnostic plot for outlier
detection is obtained and shown in the left panel of
Fig. 3.

As proof-of-principle, we selected three samples
(Sample A, B and C in Fig. 3) that are most represen-
tative of a normal sample, an X-outlier and a Y-outlier,
respectively. The distributions of prediction errors of
these three samples are shown in the right panel.
Clearly, the distribution of prediction errors of the nor-
mal sample has an approximately zero mean and a small
standard deviation. For the X-outlier, the distribution
exhibits a small absolute mean but a large standard
deviation. By contrast, the absolute mean of the
Y-outlier�s prediction errors is much wider than that of
both X-outlier and the normal sample. These results
suggest that one prediction error from a single model
cannot be used to conduct outlier detection and a
distribution of prediction errors is much more informa-
tive to characterize the outlying propensity of a sample
and therefore should be recommended for outlier detec-
tion.

To test whether the removal of outliers will improve
prediction ability, three samples (Samples B, C and D,
Fig. 3) with either a large mean or a large standard
deviation of prediction errors are removed as outliers.
The five-fold root mean squared error of cross validation
(RMSECV) was calculated for comparison. The minimum
RMSECVs achieved are 0.372 (nine PLS components) for
ata. Three samples that are most representative of (A) a normal sam-
s of prediction errors of these three samples. Samples B, C and D are
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the original data and 0.305 (nine PLS components) for
the reduced data with three outliers removed, indicating
that removal of outliers indeed improves the predictive
performance of NIR calibration models.

3.2. Variable selection
3.2.1. Monte Carlo uninformative variable elimina-
tion. Building upon the distribution of PLS regression
coefficients of each variable resulting from the leave-one-
out procedure, a reliability index, defined as the ratio of
the mean to the standard deviation of this distribution, is
used to assess variable importance in uninformative
variable elimination (UVE). The use of the leave-one-out
procedure limits the derivation of the distribution of
regression coefficients. Recently, by borrowing the virtue
of the MC technique, a modified version of UVE, called
MC UVE (MC-UVE) was proposed [30]. No noise vari-
ables are used in MC-UVE, making it faster than UVE.
Fig. 2 shows UVE or MC-UVE. And we detail the algo-
rithm of MC-UVE below.

(i) A percentage, denoted by r (e.g., r = 0.80), of
samples is selected randomly as a training sub-
set. This procedure is repeated N times, and N
training sub-sets are obtained.

(ii) For each training sub-set, a sub-model is estab-
lished using, for example, PLS.

(iii) N regression coefficients are obtained and col-
lected into a vector c for each variable and a dis-
tribution of these regression coefficients can be
derived. The mean and the standard deviation
of this distribution are denoted as mean(c) and
sd(c), respectively. Then, a reliability index
(RI), defined as the ratio of mean(c) to sd(c) in
Equation (2), is used to assess the reliability of
each variable. Based on this reliability, all vari-
ables are ranked. Then, these variables are
Figure 4. (Left panel) The reliability index of each wavelength resulting from
data. (Right panel) For illustration, the distributions of regression coefficient
accordingly.
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sequentially added to build a PLS model whose
performance is assessed using cross validation.
The reliability index corresponding to the vari-
able whose addition results in the minimum
RMSECV value is chosen as the threshold. All
variables that are associated with a reliability in-
dex lower than this threshold value can be elim-
inated.

RI ¼ meanðcÞ=sdðcÞ ð2Þ

The mechanism of MC-UVE is illustrated with the
corn-starch data, as used in Section 3.1. Nine PLS
components, determined using five-fold cross validation,
are used to build a PLS regression model. N and r are set
to 1000 and 0.8, respectively. At these settings, 1000
regression coefficients are obtained for each variable.
The reliability index calculated using Equation (2) is
shown in the left panel of Fig. 4. From this plot, two
wavelengths (marked A and C) of high reliability index
and one wavelength with nearly zero-valued reliability
index are selected and their distributions of regression
coefficients are given in the right panel of Fig. 4. The fact
that regression coefficients have a distribution (here
caused by sample variation) indicates that assessment of
variable importance using a single regression coefficient
from only one model is unreliable. A distribution of
regression coefficients reflects much more information
about the data analyzed so we recommends using it.

To test the performance of MC-UVE, 67 wavelengths
with the highest reliability index are selected using five-
fold cross validation. The minimum five-fold RMSECV
achieved using these selected 67 wavelengths is 0.358
(seven PLS components), indicating improvement over
the full spectral model that has a minimum five-fold
RMSECV 0.372 (nine PLS components), as shown
Monte Carlo uninformative variable elimination for the corn-starch
s of three wavelengths (marked as A, B and C) resulting are displayed
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previously. Taken together, this modified UVE method
proves to be effective in selecting informative variables
and improving the prediction ability of NIR calibration
models.

3.2.2. Subwindow permutation analysis. Aimed at
exploring synergistic effects among multiple variables
and motivated by the permutation technique for
assessing variable importance in random forests (RF)
[39], subwindow permutation analysis (SPA) was pro-
posed for discriminant analysis in our previous work by
following the framework of MPA [31]. A modified ver-
sion of SPA, called noise-incorporated SPA (NISPA), was
recently developed for variable selection of SVMs [10].
Only SPA is considered here, since the basic idea of
NISPA is the same as that in SPA. As depicted in Fig. 2,
SPA comprises three steps. Assuming that X is of size
n · p, we describe the algorithm of SPA below.
(1) At each iteration, Q (<p) out of the p variables are

randomly selected and considered. A percentage de-
noted by r (e.g., r = 0.80) of samples is also selected
randomly as a training sub-set with the remaining
samples as a test sub-set. Repeating this procedure
N times, N training sub-sets and N test sub-sets
are obtained. Note that both training sets and test
sets contains only Q variables.

(2) For each training sub-set, a sub-model for classifica-
tion is established using, for example, partial least
squares-linear discriminant analysis (PLS-LDA).
Figure 5. Plots A and B show the distributions of normal prediction errors (g
metabolite (C18:1n-9, P = 0) and an uninformative one (C16:1n-7, P = 0.87
first two principal components (circle: normal, diamond: patients) using a
lected by SPA are shown in Plots C and D, respectively.
(3) For each established classification model, a normal
prediction error (NPE) is first computed using the
corresponding test sub-set. Then, only one out of
Q variables in the test sub-set is permutated at a
time and a permuted prediction error (PPE) is calcu-
lated. Thus, one NPE and Q PPEs are obtained by
making predictions on the original as well as the
permuted test sub-set. This procedure is repeated
N times.

Without loss of generality, assuming that the jth
variable has been selected J (approximately NQ/p) times,
J PPEs as well as J NPEs can be obtained for the jth
variable. Using a statistical test method, the difference
between the distribution of NPEs and PPEs can be as-
sessed, leading to a P value for each variable. This P
value is transformed into a conditional synergetic score
(COSS) for measuring variable importance using
Equation (3):

COSS ¼ �log10ðPÞ ð3Þ
Intuitively, if a variable is not random and is impor-

tant, the prediction error will increase significantly when
this variable is permuted, therefore resulting in a big
difference between the distribution of NPEs and PPEs and
hence a small P value (high COSS value). If a variable is
random, no big difference is expected between distribu-
tion of NPEs and PPEs, thus giving a high P value (low
COSS value). In this sense, variable importance can be
assessed using the SPA method.
rey bar) and permuted prediction errors (white bar) of an informative
91) for type 2 diabetes data, respectively. Samples projected onto the
ll the 21 metabolites and the 3 metabolites (OLA, ALA and EPA) se-

http://www.elsevier.com/locate/trac 159



Trends Trends in Analytical Chemistry, Vol. 38, 2012
In our previous work, SPA was applied to assess the
importance of 21 metabolites in their association with
type 2 diabetes using a dataset of 90 samples (45 healthy
controls and 45 cases). The two tuning parameters (i.e.
Q and N) were set to 10 and 1000, respectively. By
comparing the distributions of NPEs and PPEs using
Mann-Whitney-U test, the variable importance of each
metabolite assessed by P value or COSS value was first
calculated.

As an example, the distributions of NPEs and PPEs of
an informative metabolite (C18:1n-9, P = 0) and an
uninformative one (C16:1n-7, P = 0.8791) are pre-
sented in Fig. 5. Using 10-fold double cross validation,
three metabolites [i.e. oleic acid (OLA), a-linolenic acid
(ALA) and eicosapentaenoic acid (EPA)] were selected
and collectively exhibited the lowest predictive error. A
principal component analysis (PCA) was performed on
both the original data and the reduced data with only
these three metabolites. The resulting scores plots are
shown in Fig. 5. By comparison, it was found that better
separation is achieved using the three metabolites iden-
tified, suggesting that SPA is a good alternative for
variable selection.

3.2.3. Margin influence analysis. SVMs are a kernel
method originally developed for classification based on
the principle of structural risk minimization [40,41].
SVMs have been gaining increasing applications in a
variety of fields (e.g., NIR analysis, QSAR/QSPR, and
gene-expression-based disease classification). It has been
shown that prediction accuracy of the SVM-classification
model could be improved by means of variable selection
[32,35,42,43]. Based on MPA, a method dedicated to
variable selection of SVMs, called MIA, was proposed in
our previous work [32]. MIA is shown in Fig. 2.
Assuming that X is of size n · p, the algorithm of MIA is
detailed below.
(1) At each iteration, Q (<p) out of the p variables are

randomly selected to obtain a training sub-set of
size n · Q. N training sub-sets are attained by
repeating this procedure N times.
Figure 6. The margin distributions of SVM models of an informative gene e
formative one (right, DMEAN = �0.009, P = 0.11).
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(2) For each training sub-set, an SVM classifier with
tuning parameters optimized using cross validation
is built.

(3) The margin of each SVM model established is then
calculated and recorded. In doing so, N margin val-
ues are obtained, denoted as mi (i = 1, 2, . . ., N).
Without loss of generality, the jth variable is taken
to illustrate the mechanism of MIA. Based on the jth
variable, the N margins can be divided into two
groups, denoted by Group A and Group B. Group
A collects the margins associated with SVM model
that includes this variable, while all the remaining
margins belong to Group B.

Suppose that the numbers of margins in these two
groups are Nj,A and Nj,B, respectively. Thus,
Nj,A + Nj,B = N. Further denote the means of these two
groups of margins as MEANj,A and MEANj,B, of which
the difference is calculated as:

DMEANj ¼ MEANj;A �MEANj;B ð4Þ
It can be inferred from Equation (4) that the inclusion

of the jth variable in an SVM model increases the margin
if DMEANj > 0 and vice versa. In this sense, variables
with DMEANj < 0 are first removed and then the
Mann-Whitney U test is employed to compare the dis-
tributions of the two groups of margins to examine
whether the increment of margin in Group A over Group
B is significant, leading to a P value for each variable.
This P value is used to evaluate the variable important
in MIA.

In our previous work, MIA was used to select gene-
expression traits that can increase the margin of an SVM
model for colon-cancer classification. Linear kernel was
chosen for building SVM models. The penalizing factor C
of SVM was optimized using cross validation. Q and N
were chosen to be 200 and 10,000, respectively. In this
setting, we obtained 10,000 margin values resulting
from 10,000 SVM sub-models. The margin distributions
of an informative gene and an uninformative one are
shown in Fig. 6. For example, this selected informative
gene can on average significantly increase the margin of
xpression trait (left, DMEAN = 0.060, P = 5.64 · 10�181) and an unin-
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an SVM model by 0.060. By contrast, a decrease in
margin by 0.009 is observed for the uninformative gene.

To test the performance of MIA, we built SVM classi-
fication models using a certain number of informative
genes and evaluated these models by leave-one-out cross
validation (LOOCV). The minimum classification error
from LOOCV achieved was 0.00 with 100 informative
genes included, indicating significant improvement over
the SVM model including all 2000 genes with LOOCV
error 17.74. A comprehensive comparison of MIA with
other methods was presented in Table 3 in the reference
[32]. Summing up, MIA is by design an intuitive method
for variable selection of SVM and was shown to be
effective in singling out informative genes in our work.

3.2.4. Determination of significant variables for supervised
self-organizing maps. SOMs [44], also called Kohonen
neural networks, were developed by Kohonen for pro-
jecting samples in a high dimensional space onto a 2D
plane, thus providing visualization of how samples get
clustered. Compared to the most commonly used
dimension-reduction method, PCA, SOMs are more
robust to outliers and can handle non-linear problems.
Later, supervised SOMs were introduced by incorporat-
ing the class information of training samples. As is
known, for classification of high dimensional samples,
variable selection can often improve classification re-
sults. Based on MC sampling, Wongravee et al. [33]
described an extension of the SOMs discrimination index
(SOMDI) by using supervised SOMs to determine poten-
tially significant variables that are responsible for class
separation. Since this method can be seen as an MPA
approach, given two classes of samples, its algorithm is
briefly reviewed as follows:
(1) At each iteration, a percentage denoted by r (e.g.,

r = 0.67) of samples is selected randomly as a train-
ing sub-set. Repeating this procedure N times, N
training sub-sets are obtained.

(2) For each training sub-set, the SOMDI scores of all
variables are calculated for both the ‘‘in-group’’
and ‘‘out-group’’ samples, which are stored into
two p-dimensional vectors (i.e. Sin and Sout) of
which the difference is computed as SD = Sin � Sout.
Any variable associated with a negative value of SD
is treated as an unranked variable, whereas those
variables with positive SD values are assigned a
rank.

(3) Compute the average rank of each variable over the
N training sub-sets to provide an overall estimate of
variable rank, which is then used to determine
which variables are significant.

The proposed method was applied to a nuclear mag-
netic resonance (NMR)-based metabolic dataset of 96
saliva samples. The performance of this method was
discussed [33].
3.2.5. Ensemble-based robust biomarker identifica-
tion. Biomarker discovery is of particular use in
biomedical applications for understanding biological
data [8,28,35]. As stated by Abeel et al. [34], the
selection stability of biomarkers with respect to sam-
pling variation has received attention only recently,
and it may greatly influence subsequent biological
validations. In biomedical practice, it would therefore
be very important to improve the reliability or the
statistical significance of selected biomarkers. To this
end, a method that was shown to be effective in
improving robustness of biomarker identification based
on ensemble was proposed by Abeel et al. [34]. This
method falls into the category of MPA approaches, so
we briefly introduce it here by analogy with previous
methods described.
(1) At each iteration, the bootstrapping method is used

to generate a training sub-set from the original
training data. Repeating this procedure N times, N
training sub-sets are obtained.

(2) For each training sub-set, linear SVMs coupled with
recursive feature elimination is used to perform var-
iable selection. Then, each variable is assigned a
rank, which can be collected into a p-dimensional
vector. After N iterations, a matrix of size N · p that
records ranks of all variables in N iterations is ob-
tained.

(3) The ensemble ranking is derived by summing the
ranks over N iterations or taking a weighted sum-
mation of the ranks over N iterations with the
AUC of each linear SVM model as weight.

The authors evaluated the proposed methodology
using four microarray datasets and found an increase of
up to almost 30% in robustness of the selected bio-
markers along with an improvement of around 15% in
prediction accuracy [34]. These results provided a good
example that, with the aid of MC sampling, variable-
selection stability can be improved significantly.
4. Concluding remarks

By highlighting the common principle of a spectrum of
MC-based algorithms, MPA has been proposed as a
general framework for data analysis.

In the context of chemical and biological modeling,
the application of MPA-based methods in outlier detec-
tion and variable selection demonstrates that the use of a
population of sub-models could provide comprehensive
information of the data and hence should promise better
understanding and modeling of the data analyzed. The
methods and the applications selected in this review are
limited, but we hope that they can represent a general,
systematic framework for chemical and biological mod-
eling.
http://www.elsevier.com/locate/trac 161
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