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A new wavelength interval selection procedure, moving
window partial least-squares regression (MWPLSR), is
proposed for multicomponent spectral analysis. This
procedure builds a series of PLS models in a window that
moves over the whole spectral region and then locates
useful spectral intervals in terms of the least complexity
of PLS models reaching a desired error level. Based on a
proposed theory demonstrating the necessity of wave-
length selection, it is shown that MWPLSR provides a
viable approach to eliminate the extra variability generated
by non-composition-related factors such as the perturba-
tions in experimental conditions and physical properties
of samples. A salient advantage of MWPLSR is that the
calibration model is very stable against the interference
from non-composition-related factors. Moreover, the se-
lection of spectral intervals in terms of the least model
complexity enables the reduction of the size of a calibra-
tion sample set in calibration modeling. Two strategies are
suggested for coupling the MWPLSR procedure with PLS
for multicomponent spectral analysis: One is the inclu-
sion of all selected intervals to develop a PLS calibration
model, and the other is the combination of the PLS
models built separately in each interval. The combination
of multiple PLS models offers a novel potential tool for
improving the performance of individual models. The
proposed procedures are evaluated using two open-path
Fourier transform infrared data sets and one near-infrared
data set, each having different noise characteristics. The
results reveal that the proposed procedures are very
promising for vibrational spectroscopy-based multicom-
ponent analyses and give much better prediction than the
full-spectrum PLS modeling.

Multicomponent spectral analysis has come into widespread
use in analytical chemistry. A main goal of multicomponent
spectral analysis is to construct a calibration model relating the

outputs of multivariate spectrometers to the compositions or the
properties of analytical samples. In most situations, a linear
calibration model is established due to the mathematical simplicity
and the physical or chemical interpretability. While the advances
in modern spectroscopic instrumentation have brought enhanced
resolution and sensitivity as well as easiness in spectral measure-
ments, the expanded amount of data collected and the increased
complexity of samples practically involved persist in a need of
useful approaches to combat the overdetermined systems inherent
in multicomponent spectral analysis and build robust and stable
linear calibration models. A variety of linear regression methods
have been proposed for multicomponent spectral analysis, among
which the most popular are the so-called latent variable (LV)
methods1-8 including principal component regression (PCR),1

partial least-squares (PLS) regression,2 and their analogues.3-7 A
theoretical demonstration has been given that, under certain
assumptions, the addition of spectral channels always improves
the prediction performance.9 The implication of this proof is that
these LV methods may eliminate the necessity of wavelength
selection and have a built-in capacity to deal with the overdeter-
mined problem of full-spectrum calibration. However, there is
increasing evidence indicating, either theoretically10,11 or experi-
mentally,12,13 that wavelength selection can still significantly refine
the performance of these full-spectrum calibration techniques. It
has been recognized that the ideal assumptions on which the
theoretical proof is based may be unrealistic, and the elimination
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of uninformative spectral channels is still of potential importance
in the practice of multicomponent spectral analysis even in
situations where the LV methods are applied.

Wavelength selection is composed of the decision of a subset
of spectral channels with which the established calibration model
gives the minimum errors in prediction. The benefit gained from
wavelength selection is not only the stability of the model to the
collinearity in multivariate spectra but also the interpretability of
the relationship between the model and the sample compositions.
A number of procedures have been proposed for wavelength
selection in multicomponent spectral analysis. These procedures
can be distinguished from each other either in the objective
criterion for measuring the optimality of wavelength subsets or
in the search algorithm to locate the optimal subsets. Typical
objective criteria include the spectral signal-to-noise ratio, the
condition number or determinant of the calibration matrix, Akaike
information criterion (AIC), and Mallows Cp statistics as well as
some estimates of the mean squared error in prediction (MSEP),14

while routine search algorithms comprise the stepwise selection,15

simplex optimization,12 branch and bound combinatorial search,16

simulated annealing,17 and genetic algorithms (GAs).18 However,
most of the conventional procedures, generally coupled with an
inverse least-squares step, are designed to select a few wave-
lengths such that the overdetermined system of multicomponent
spectral analysis can be converted to an exactly determined one.
Because only a small number of spectral channels are utilized in
calibration modeling and much information in the whole spectra
is not exploited, these approaches may be exposed to significant
loss of analytical precision as well as analytical accuracy. To
remedy the defect of the conventional wavelength selection
methods, considerable effort has been directed toward developing
new wavelength selection methods that can be effectively coupled
with the full-spectrum calibration techniques.

There are different approaches to wavelength selection that
can be implemented in conjunction with the LV modeling
techniques. Some of the approaches rank the spectral channels
based on the uncertainty of the associated regression coefficients.
The wavelengths with large uncertainty are taken as uninformative
ones and may be eliminated stepwise during the modeling, while
the wavelengths with small uncertainty may be included stepwise
in the model.11,19-21 Other procedures directly optimize the
wavelength ranges or subsets together with the number of LVs
using GA-based search strategy to minimize an estimate of
MSEP.22-24 In contrast, the present study focuses on the selection
of wavelength intervals instead of individual spectral points. The
philosophy of search for spectral intervals is the continuity of most
kinds of spectral responses. For example, vibrational and rotational

spectra give Voigt profiles that generally have a full width at half-
height at least 4 cm-1, usually 8-20 cm-1. This implies the
existence of intrinsic spectral intervals. In addition, the use of
spectral intervals rather than individual spectral points not only
enable a straightforward coupling of the wavelength selection
procedure with the full-spectrum modeling techniques, thereby
providing the possibility of improved analytical accuracy, but also
make it possible to implement an effective algorithm for ascertain-
ing the intervals beneficial for the modeling.

In the present study, we demonstrate that the prediction error
of indirect (or inverse) calibration may be inflated by including
nonideal spectral regions, and a common feature of the nonideal
spectral regions is the increased complexity in LV models when
these regions are used for calibration modeling. A new wavelength
interval selection method, moving window partial least-squares
regression (MWPLSR), is thus proposed. This method builds a
series of PLS models in a window that moves over the spectral
direction and then locates useful spectral intervals in terms of the
model complexity and the sum of residuals. When multiple
spectral intervals are selected, two strategies are suggested for
coupling the MWPLSR procedure with PLS for multicomponent
spectral analysis: One is the inclusion of all selected intervals to
build a PLS calibration model, and the other is the combination
of the PLS models built separately in each interval.

The selection of spectral intervals has been addressed in
several works.10,25-27 Norris used a manual procedure for selecting
the best spectral regions via examination of the correlation
coefficients between the spectral derivatives and the analyte
concentrations with empirical optimization of the derivative gap
size.25 Xu and Schechter proposed a wavelength selection criterion
based on the relative error in the norm of the net analytical signal
and then optimized both the window position and the window size
in such a way that the window gave the minimum relative error.10

Their method is distinguished from MWPLSR in that it aims at
rectifying the full-spectrum approaches in situations where the
norm of the net analytical signal is small and the first-order
approximation of prediction error becomes unrealistic, while
MWPLSR focuses on the cases where the first-order approxima-
tion of prediction error is dominated by nonideal spectral intervals
and the full-spectrum approaches can be improved via the
elimination of these nonideal spectral intervals. Norgaard and co-
workers proposed a spectral interval selection procedure, inter-
val partial least-squares regression (iPLS), based on an idea
relatively similar to that behind MWPLSR.26,27 However, unlike
the MWPLSR procedure that explores a window gradually moving
along the spectral direction using PLS models of varying dimen-
sionalities, the iPLS method tests a series of adjacent but
nonoverlapping windows using PLS regression with the same
model dimensionality. This may make the iPLS algorithm rather
sensitive to the choice of model dimensionality and increase the
risk of missing the optimal window. Moreover, MWPLSR can
locate the optimized spectral intervals directly, while iPLS requires
a postoptimization step to refine the spectral window initially
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ascertained. On the other hand, iPLS estimates the calibration
model based on all the wavelengths from the accepted windows,
which may deteriorate the performance of the total model by
including spectral windows with varying goodness. Instead, the
present method constructs the total model through a weighted
averaging of the local models, which provides a robust way to
exploit the information comprised in the local models and avoids
possible accumulation of errors in multiple spectral intervals.

The proposed procedures are evaluated using three vibrational
spectroscopic data sets, i.e., two open-path Fourier transform
infrared (OP/FT-IR) data sets and one near-infrared (NIR) data
set, each having different noise characteristics. The issue of
wavelength selection is of particular importance in vibrational
spectroscopy-based multicomponent spectral analysis, since IR,
Raman, and NIR spectra generally show relatively high sensitivity
to small perturbations in the experimental conditions as well as
the physical properties of samples in comparison with ultraviolet
and visible spectra. These non-composition-related factors may
make responses at some local spectral intervals deviate signifi-
cantly from ideal situations, and elimination of these uninformative
intervals can substantially improve the analytical accuracy in
modeling the concentrations. The results obtained show that the
proposed procedures yield superior performance compared to the
full-spectrum PLS modeling.

THEORY
Theoretical Background. Consider the indirect (or inverse)

calibration model routinely used in multicomponent spectral
analysis

where the dependent variable c is the analyte concentration in a
sample, the explanatory variables r are the spectral responses
measured at I wavelengths of the sample, the superscript T
denotes the matrix or vector transposition, b is the coefficient
vector to be estimated, and e is a model error. Given data, c )
(c1,..., cN)T being the analyte concentrations in N calibration
samples, R being the N × I response matrix whose nth row rn

T

is the spectrum of the nth calibration sample, eq 1 can be rewritten
as

with e ) (e1,..., eN)T. Without loss of generality, one can assume
that both R and c are columnwise standardized; i.e., each column
has zero mean and unit variance. The goal of indirect calibration
is to estimate b such that using eq 1 one can accurately predict
the concentrations of the analyte in new samples. This is
essentially a linear regression problem with major concern about
prediction.

It has been shown that the true regression coefficient vector
is given by28

where nas designates the net analytical signal (NAS) of the
analyte28 and || . || denotes the Euclidean norm of a vector. Ideally,
it is assumed that the errors are independent and identically
distributed and then the theoretically achievable minimum MSEP
is

That is to say, the MSEP decreases with the increase of the length
of nas, provided the NAS can be available without errors and the
errors are independent and identically distributed. As a matter of
fact, this conclusion is the basis for the theoretical proof that the
addition of spectral channels always improves the prediction
performance.9 However, spectral practice frequently goes contrary
to the ideal assumption that the errors are identically distributed
and the NAS cannot always be obtained without any deviations.
To estimate the error in prediction of concentrations, the errors
in r and b both should be taken into account.

Assuming that the errors are independent, one can reach the
first-order approximation of MSEP from eq 1 as follows:

where bi and ri are the ith elements of b and r, respectively, and
d2( ) denotes the squared error of a variable. Notice that the MSEP
comprises two parts; one is the estimation errors in the regression
coefficients, and the other is the errors in the spectra measured.
If J spectral channels are added in calibration modeling, the MSEP
is given by

Then, the variation in MSEP is

One can assume that the estimation errors in regression coef-
ficients in the originally selected spectral channels are not
significantly affected by the addition of spectral channels; then
variation in MSEP can be approximately represented as

Now, it is clear that the addition of spectral channels has two kinds
of effect on the MSEP. On one hand, the magnitude of bi gets
smaller in the originally selected regions (b′i2 e bi

2, i ) 1, 2, ...,(28) Lorber, A. Anal. Chem. 1986, 58, 1167.

c ) rTb + e (1)

c ) Rb + e (2)

b ) nas/||nas||2 (3)

msep(c) ) σ2 ||b||2 ) σ2/||nas||2 (4)

msep(c) ) ∑
i)1

I

bi
2d2(ri) + ∑

i)1

I

ri
2d2(bi) (5)

msep(c) ) ∑
i)1

I + J

b′i
2d2(ri) + ∑

i)1

I + J

ri
2d2(b′i) (6)

∆msep(c) ) ∑
i)1

I

(b′i
2 - bi

2)d2(ri) + ∑
i)I+1

I+J

b′i
2d2(ri) +

∑
i)I+1

I+J

ri
2d2(b′i) + ∑

i)1

I

ri
2 {d2(b′i) - d2(bi)} (7)

∆msep(c) ) ∑
i)1

I

(b′i
2 - bi

2)d2(ri) + ∑
i)I+1

I+J

b′i
2d2(ri) +

∑
i)I+1

I+J

ri
2d2(b′i) (8)
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I), so the first term at the right side of eq 8 takes a negative value,
which makes the MSEP decrease. On the other hand, the
magnitude of bi and the errors in regression coefficients associated
with the added spectral channels varies from 0 to nonzero value
(b′i2 g 0, ri

2d2(b′i) g 0, i ) I + 1, 2, ..., I + J), and then the second
and the third terms at the right side of eq 18 have a positive value,
which causes an increase in the MSEP. As a consequence, if the
errors in the spectra obtained at added wavelengths or the
estimation errors in the regression coefficients at added spectral
channels are too large, the MSEP may be inflated by the inclusion
of these spectral channels. In other words, the selection of suitable
spectral channels that have good signal-to-noise ratio and provide
an accurate estimate for the regression coefficients is capable of
improving the accuracy of multicomponent spectral analysis
techniques.

Thus far, it has been demonstrated that the spectral channels
having poor signal-to-noise ratio and giving large uncertainty in
the estimate of regression coefficients will induce an inflated error
in the prediction of concentrations. The uncertainty in the estimate
of regression coefficients is generated by two factors. One is the
error in the concentrations, and the other is the uncertainty in
the spectra. In LV modeling, the regression coefficient vector is
a certain linear combination of the spectra of calibration samples
with combination weights relevant to the concentrations. The
errors in the concentrations are propagated into the regression
coefficient vector of the whole spectral region through the
combination weights, which has a similar effect at different
spectral channels. In contrast, the errors in the spectra can be
propagated into regression coefficients through the basis vectors
in the linear combination, which has different contributions at
varying spectral channels. If there is large uncertainty in certain
spectral channels, the uncertainty in regression coefficients at the
corresponding spectral channels will also be relatively large.
Because the effect of errors in the concentrations cannot be
reduced via wavelength selection, the objective of wavelength
selection can only be set to improving the prediction accuracy by
eliminating the spectral channels with large uncertainty or
including merely the spectral channels with small uncertainty.

Before the description of the proposed wavelength selection
procedure, the characteristic of spectral channels with large
uncertainty needs to be addressed first. Actually, the spectral
channels with large uncertainty mean that the responses at these
channels are severely contaminated by the factors that cannot be
modeled using the calibration samples. Such factors include large
random errors, nonlinearity, and drifts created by the changes in
instrumental parameters, experimental conditions, or physical
properties (non-composition-related properties) of samples. Since
these non-composition-related factors introduce additional vari-
ability in the responses at these spectral channels, if these spectral
channels are used for calibration modeling based on an LV method
such as PLS, an increased number of LVs has to be constructed
to account for extra variability generated by the non-composition-
related factors. This results in increased complexity or model
dimensionality in the LV model. That is to say, the spectral
channels with much uncertainty can be characterized by the
significantly increased model dimensionality (the number of LVs)
of the LV-based calibration model built using these spectral
channels. Conversely, the spectral channels with little uncer-

tainty can be identified as those giving the least model dimen-
sionality.

Wavelength Interval Selection by Moving Window Partial
Least-Squares Regression. The motivation for selecting spectral
intervals is the continuity of spectral responses. That is, if there
is a wavelength informative for the modeling, there must be a
spectral interval around the wavelength that contains useful
information for the model building. Analogously, if a spectral
channel is contaminated by non-composition-related factors, the
wavelength interval around the channel will also be interfered with
these factors. Based on the conclusion of the preceding section,
it is clear that the spectral intervals with large uncertainty can be
identified by the significantly increased model dimensionality of
the LV-based calibration model built using the spectral interval,
while the spectral intervals with small uncertainty can be ascer-
tained as those with the least model dimensionality. This is the
basis for the proposed wavelength interval selection procedure,
moving window partial least-squares regression.

In MWPLSR, a spectral window that starts at the ith spectral
channel and ends at the (i + H - 1)th spectral channel is
constructed. For simplicity, the window position is used for
denoting the starting position of the window. The spectra obtained
in the spectral window is a submatrix Ri (N × H matrix) containing
the ith to the (i + H - 1)th columns of the calibration matrix R.
The PLS models with different numbers of LVs can then be built
to relate the spectra in the window to the concentrations of the
analyte. That is,

where bi,k (H × 1 vector) is the regression coefficient vector
estimated using PLS with k PLS components and ei,k is the residue
vector obtained with a k-component PLS model. The window is
moved over the whole spectral region. At each position, the PLS
models with varying PLS component number is built for the
calibration samples, and the sums of squared residues (SSR), i.e.,
the squared norms of the residue vectors, are calculated with these
PLS models and plotted as a function of the position of the window.
This yields a number of residue lines, with each line associated
with the SSR for a certain model dimensionality in the corre-
sponding window position. Obviously, the SSR of the PLS models
at a window position will decrease with the increase of the PLS
components. Furthermore, based on the aforementioned conclu-
sion, provided the window is positioned in a spectral interval
comprising useful information for the modeling and the window
size is suitably defined, the SSR is expected to reach an acceptable
error level with a relatively small number of PLS components.
On the contrary, if the window is located in a spectral interval
contaminated significantly by uncertain factors, the SSR cannot
approach the desirable error level with a small number of PLS
components, and the desired PLS model dimensionality has to
be substantially increased such that much more PLS components
can be exploited to reduce the SSR. Therefore, by analyzing the
desired PLS model dimensionality as the function of the window
position, the spectral intervals containing information beneficial
for calibration modeling as well as the spectral interval comprising
significant uncertainty can be ascertained. Then these informative
spectral intervals are selected and utilized for building the
calibration model based on PLS.

c ) Ribi,k + ei,k (9)
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It is important to note that the PLS method with one dependent
variable (PLS1) is employed in the present study for modeling in
the spectral window. The major advantage with the use of PLS1
is that each component can be examined independently, since
the optimal conditions for determining each component are
different in most situations.

Once multiple spectral intervals are selected, two strategies
are suggested for PLS modeling of the calibration equation using
the selected spectral intervals. One is to include all the selected
spectral intervals and develop a PLS model using the selected
intervals. The other is to separately build individual PLS models
in each interval and construct a linear combination of all the
separate PLS models for prediction. The second strategy is
described in the subsequent section.

Combination of Multiple PLS Models in Spectral Interval
Selection. If two or more spectral intervals are selected by
MWPLSR, multiple PLS calibration models can be obtained by
developing a model in each interval. Suppose that there are J
spectral intervals selected and J PLS models are established as
follows:

where bj is the estimate of regression coefficients with suitable
PLS components and ej is the model error for the PLS model in
the jth spectral interval. In model combinations of these PLS
models for prediction of concentrations in unknown samples, the
calibration model is computed as a certain linear combination of
the J PLS models. That is,

where wj is the combination weight (j ) 1, 2, ..., J). Apparently,
the combination weights can be determined directly using least-
squares regression by minimizing ||c - y||2. However, as each
PLS model is built as the estimate of the concentrations c, the
sum of the combination weights tends to approach 1. If some
weights have negative values, the other weights may have a value
larger than 1. On the other hand, since each PLS model is obtained
using different spectral intervals, it is expected that the errors in
Rjbj (j ) 1, 2, ..., J) are independent of each other. Then, the error
in the combination model is the weighted sum of the errors in
each model with the weights being the squares of the combination
weights. Therefore, if there are combination weights larger than
1, the error in the corresponding model will be inflated. This is
an undesirable property for the model combination. To circumvent
the problem, it is necessary to put a certain constraint on the
combination weights. A straightforward constraint is that the
weights are restricted to the domain [0, 1]. However, since the
sum of the combination weights tends to approach 1, it is enough
to restrict the combination weights to being nonnegative. There-
fore, the combination problem of multiple PLS models can be
formulated as minimizing the sum of squared deviations between
the actual concentrations and the combined model subjected to
the constraint that the combination weights are nonnegative. That
is,

The solution of the combination weights can be easily approached
using a nonnegative least-squares algorithm.

It is noteworthy that the aforementioned procedure to deter-
mine the combination weights is based on the fact that the models
to be combined are all constructed properly; that is, each model
is built to yield optimized prediction. In cases where some models
are not properly built, it is better to utilize an MSEP-based loss
function for the determination of combination weights. A common
resort is the cross-validation PRESS (sum of squared residues in
prediction) or the MSEP on an additional validation set, and it
can be immediately implemented by replacing c and Rj (j ) 1, 2,
..., J) by their counterparts in the validation set. In the present
study, the PLS models in different spectral intervals are all properly
constructed based on a representative calibration set, so the
aforementioned procedure can be employed directly.

EXPERIMENTAL SECTION
OP/FT-IR Data. These data have been reported in detail

previously.24 Two OP/FT-IR data sets were synthesized by adding
reference spectra to experimentally measured open-path back-
ground spectra. The open-path background spectra were meas-
ured in the range from 700 to 3000 cm-1 with a Bomem MB-104
spectrometer over several weeks under a variety of conditions
(temperature, humidity, path lengths). In each measurement, two
single-beam spectra were obtained with the same nominal path
length and the ratios determined and converted to absorbance.
In data A, the interferograms for the background were measured
at a 1-cm-1 spectral resolution and processed using medium
Norton-Beer apodization, while in data B, the background spectra
resolution were obtained at an 8 cm-1. All background spectra
were corrected according to the procedures outlined in U.S. EPA
Method TO-16 that addresses OP/FT-IR measurements.29

The reference spectra of 100 samples were generated using
the pure spectra measured for five pure compounds, i.e., methanol,
ethanol, 1-propanol, and 1-butanol, and 2-propanol. The strongest
absorption peak for each pure spectrum was first scaled to a
concentration of 0.3 absorbance unit and assigned a value of 1
arbitrary concentration unit (ACU).30 The concentrations of the 5
components in 100 samples were created using random numbers
ranging from 0 to 1. Then the reference spectra of these samples
were generated exactly in terms of Beer’s law using the scaled
pure spectra and the concentrations matrix. The final response
spectra were then synthesized by adding the reference absorbance
spectra to the real open-path background absorbance spectra. The
reference spectra were manipulated as interferograms using
medium Norton-Beer apodization and truncated to 1-cm-1 resolu-
tion in data A and to 8-cm-1 resolution in data B.

The 100-sample data were split into calibration and prediction
sets for modeling the concentration of ethanol in the mixtures.

(29) Compendium Method TO-16 Long-Path Open-path Fourier Transform
Infrared Monitoring of Atmospheric Gases, EPA/635/R-96/010b, U.S.
Environmental Protection Agency, Research Triangle Park, NC, 1999.

(30) Anderson, R. L.; Griffiths, P. R. Anal. Chem. 1975, 47, 2339.

c ) Rjbj + ej j ) 1, 2, ..., J (10)

y ) ∑
j)1

J

wjRjbj (11)

min ||c - ∑
j)1

J

wjRjbj||2 (12)

subject to wj g 0 (j ) 1, 2, ..., J)
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The calibration set that was composed of 75 samples was used to
build the models for prediction using full-spectrum PLS or the
proposed method. The prediction set that comprises the remaining
25 samples was used to evaluate the behavior of the models.

NIR Data. The samples were prepared gravimetrically and
composed of four components including ethanol (EtOH, p.a. 99.8%,
Roth), 1-butanol (BuOH, p.a. 99.5%, Roth), ethyl acetate (EtOAc,
p. a. 99.5%, Baker) and n-butyl acetate (BuOAc, technical grade,
98%, Riedel-de-Haen). The concentration range of the samples was
chosen according to the situation of monitoring the reaction

where the catalyst, potassium tert-butylate, was not added such
that stable mixtures could be obtained.

The NIR spectra were recorded on a Foss 6500 spectrometer
using the transflection mode. The sample was positioned in a
quartz vessel with a gold-coated reflector (0.5-mm layer thickness
corresponding to ∼1-mm sample thickness) on the quartz window
that is illuminated from below. The radiation transflected from
the sample was collected by four PbS detectors positioned under
the quartz window with an inclination angle of 45°. Each sample
was measured in duplicate by rotating the quartz vessel by 45°
between the recording of spectra, and 32 scans were accumulated
for one spectrum in the wavelength range from 1100 to 2498 nm
with an interval of 2 nm. The spectral resolution was 10 nm at
1600 nm. A ceramic plate was used as reference, and NIR spectra
of the sample were measured at 22 °C.

The 37-sample data were split into calibration and prediction
sets for modeling the concentration of EtOAc in the mixtures.
The calibration set was composed of 19 samples randomly chosen
from the whole set, while the prediction set comprised the
remaining 18 samples.

Throughout the present study, the window size for MWPLSR
is set to 20 spectral points. It was found that the window size had
no significant effect on the residue lines obtained, provided the
window size was larger than the desired model dimensionality
and smaller than the spectral intervals to be sought for. For
simplicity of comparison, the dimensionality for the PLS model
constructed using certain spectral regions was determined to be
the number where the SSR value begins to decrease insignificantly
with the increase of model dimensionality. It was also checked in
the present study that, with a representative calibration set, this
procedure gave model dimensionalities consistent with those
determined by the validation methods.

RESULTS AND DISCUSSION

OP/FT-IR Data A. The spectra of the OP/FT-IR data A are
shown in Figure 1. The measurement errors in the data mainly
arise from the instrumental noise in the background spectra. One
can see a number of “spikes” over the whole spectral region.
These spikes are due to detector error and strong background
absorption. Over the long path length, the background compo-
nents, water vapor and CO2 in the atmosphere, have very strong
absorption in the spectral ranges of 1200-2000 and 2250-2400
cm-1, and the absorbances in these spectral ranges are extremely
large. As a result, when the ratios of these spectra (that have very

strong intensities) are determined, two very small detector errors
will be greatly amplified in these spectral ranges. These spikes
are unavoidable at the 1-cm-1 resolution. A decrease in the spectral
resolution may eliminate most of the spikes, but it may also
exclude some analytical information as well. For OP/FT-IR field
operation and calibration, the U.S. EPA currently specifies a 1-cm-1

resolution for common use.29

Because the OP/FT-IR spectra in the ranges of 1200-2000
and 2250-2400 cm-1 are dominated by the measurement errors
and the samples themselves do not have absorption in the range
of 2000-2250 cm-1, one may well utilize the spectral regions of
700-1200 and 2400-3000 cm-1 for the quantification of ethanol
in the mixtures. As a matter of fact, it was found that, even though
the whole spectral range was included in the spectral interval
selection, the proposed approach is still capable of indicating that
the spectral range of 1200-2400 cm-1 is uninformative and should
be excluded in the modeling. To keep consistency with the
implementation of OP/FT-IR analysis, we will only focus on the
treatment of the spectral ranges of 700-1200 and 2400-3000 cm-1.

The first 20 residue lines obtained by MWPLSR for OP/FT-IR
data A in the spectral ranges of 700-1200 and 2400-3000 cm-1

are depicted in Figure 2a and d, respectively. As excessive
components (20 components) are used for the PLS model, the
residue lines indicate the achievable error level (represented by
the SSR value) for the prediction of ethanol is ∼10-3. In Figure
2a, there are two spectral regions with which the built PLS models
reach the error level. The residue lines in these two regions are
replotted at an amplified scale in Figure 2b and c. One can observe
that the window-based PLS models attain to the error level with
five components when the window is positioned in the spectral
interval of 719-738 cm-1 (Note that the right boundary of the
interval can be extended backward by 19 spectral points, the size
of the window minus 1.), and introduction of more components
does not improve significantly the fitness of the model. This
indicates that the spectral interval of 719-738 cm-1 may be
informative for modeling the concentration of ethanol. Likewise,
one can ascertain from Figure 2c that the spectral interval of
1013-1029 cm-1 may be useful for the modeling. In Figure 2c,
there are two spectral intervals around 1039 and 1050 cm-1 with

EtOAc + BuOH98
t-BuOK

BuOAc + EtOH

Figure 1. OP/FT-IR spectra obtained at 1-cm-1 resolution in the
range of 700-3000 cm-1 for 100 mixture samples of methanol,
ethanol, 1-propanol, 1-butanol, and 2-propanol.
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which the built PLS models can also achieve the error level.
However, these two intervals are excluded due to the fact that
the residue lines continue to lower down significantly until more
than 10 components were exploited in the PLS models, indicative
of extra uncertainty in these spectral intervals. In Figure 2d, one
sees that when the window is in the region of 2400-3000cm-1,
the residue lines for the 20-component PLS models are still
significantly higher than the achievable error level. This implies
that the spectra of the samples in the spectral region are severely
contaminated by the instrumental noise and the resulting spectra
show substantial deviation from the ideal linear response. To
model the concentration of ethanol using such noise-distorted
spectra, PLS has to exploit more components to compensate for
the model deviations, and the fitness of the PLS model to the data
cannot reach a desirable level, provided the spectral window is
not large enough. Therefore, it was ascertained that the spectral
region of 2400-3000 cm-1 was uninformative and could be
eliminated in the modeling. Based on the above findings, it is clear
that for the OP/FT-IR data A only two small spectral intervals,
719-738 and 1013-1029 cm-1, are not contaminated substantially
by the instrumental noise and can be useful for modeling of the
concentration of ethanol. These two spectral intervals were then
selected in subsequent calibration and prediction.

The results of PLS modeling for the OP/FT-IR data A using
full-spectrum or selected spectral intervals are shown in Table 1.
It can be seen that the best spectral interval located by the iPLS
algorithm was very close to one of the informative spectral
windows given by the proposed method. Moreover, in terms of
the root-mean-squared error in prediction (RMSEP), the PLS
models based on the selected spectral intervals all give much
better performance than the full-spectrum-based PLS models. This
confirms the conclusion that the performance of PLS can still be
substantially improved by selecting proper spectral regions. Since
the absorption bands arising from the C-H stretching mode of
ethanol are very similar to those of other alcohols in the mixtures,
the spectral region of 2400-3000 cm-1 contains less unique
information concerning ethanol relative to the spectral region of
700-1200 cm-1, where the band due to the O-H deformation
mode is expected. That is to say, the length of NAS of ethanol in
the region of 2400-3000 cm-1 is smaller than that in the region
of 700-1200 cm-1. Then, the theoretically achievable prediction
error for the model built on the region of 2400-3000 cm-1 is larger
than that in the region of 700-1200 cm-1. As a consequence, the
full-spectrum PLS model constructed using the spectral region
of 2400-3000 cm-1 gives the worst prediction in all the models.
Moreover, as the weak signal in this region is severely distorted

Figure 2. Residue lines obtained by MWPLSR of the OP/FT-IR spectra A for the calibration samples. The residue lines in the range of (a)
700-1200, (b) 700-800, (c) 1000-1100, and (d) 2400-3000 cm-1.
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by the instrumental noise, the PLS model including both this
region and the region of 700-1200 cm-1 also yields a slightly
deteriorated performance in comparison to the PLS model built
only on the spectral region of 700-1200 cm-1.

One can also see that, to construct a proper model for
prediction, the full-spectrum PLS calibration requires four more
components than the PLS calibration using the selected intervals.
This implies that the inclusion of uninformative spectral regions
will cause additional variability in the model. Because in practice
such extra variability is always generated by complicated baselines
or nonlinearity, it cannot be completely accounted for by the
calibration samples, thereby introducing increased uncertainty into
the model. Therefore, the full-spectrum-based PLS models are less
stable than the PLS models based on the selected spectral
intervals. Surprisingly, the PLS model using both spectral intervals
of 719-738 and 1013-1030 cm-1 shows a little inferior perfor-
mance compared to the PLS model based on the spectral interval
of 1013-1030 cm-1, while the combination of two PLS models
separately built in two selected intervals give the best performance
in the prediction. This might be due to the fact that the noise
characteristic in the region of 719-738 cm-1 is different from that
in the spectral interval of 1013-1030 cm-1, and the noises from
these two selected intervals are accumulated. As a matter of fact,
the accumulation of noise in these two regions is indicated by
the fact that, in the construction of the PLS model, one more
component is exploited to account for the noise. The above finding
also indicates that, in such situations, a better choice may be the
combination of the PLS models separately built on the selected
spectral intervals, since it avoids the accumulation of noise via
modeling on individual spectral intervals and the difference in
model errors can be technically handled using varying combina-
tion weights.

OP/FT-IR Data B. The OP/FT-IR data B are shown in Figure
3. With decreased resolution, the instrumental errors of spikes
merely appear in the absorption regions of water and CO2, while
the spikes are nearly eliminated in the spectral ranges of 700-
1200 and 2400-3000 cm-1. Two absorption bands are observed
clearly around 1100 and 2900 cm-1. This suggests an improved
signal-to-noise ratio for the analyte, ethanol.

The residue lines obtained by MWPLSR for the OP/FT-IR data
in the spectral ranges of 700-1200 and 2400-3000 cm-1 are
depicted in Figure 4a and b, respectively. These plots indicate
that the achievable error level (represented by the SSR value)
for the PLS model is approaching 10-4. It is observed in Figure
2a that when the window is located in the spectra interval of 975-
1130 cm-1, the PLS models built in the window attain to the error

level. Then the spectral interval of 975-1130 cm-1 was selected
and included in the calibration. One also sees the spectral interval
of 805-959 cm-1 in which the window-based PLS models give an
error level of 10-3. As the error level is usually desirable in
multicomponent spectral analysis, the spectral interval was also
included in calibration such that the effect of spectral intervals of
different error levels could be examined. It is also observed that,
to reach the error level, increased model dimensionality has been
used in the modeling with these two spectral intervals. Based on
the above findings, one can conclude that, with lower wavenumber
resolution, better signal-to-noise ratios are expected to be achiev-
able and the useful spectral intervals may be extended; however,
the deviation of the model from the ideal linearity is also inclined
to increase. Similarly, it can be identified from Figure 4b that the
spectral interval of 2826-2965 cm-1 is an informative region for
the calibration. This spectral interval was then selected for the
PLS calibration.

The results of PLS calibration for the OP/FT-IR data using
full-spectrum or selected spectral intervals are shown in Table 2.
One can see that the model dimensionalities for all the optimal
PLS models are larger than the number of species present in the
samples. This is also due to the fact that the spectral responses
at relatively low spectral resolution may exhibit a slight discrep-
ancy from the ideal linear model. It is also observed that the best
prediction is achieved for PLS modeling using two selected
spectral intervals, 975-1130 and 2826-2965 cm-1, which verifies

Table 1. Results of PLS Modeling of OP/IR Data A for Ethanol Using Given Spectral Regionsa

PLS PLS PLS PLSw PLSw PLSw PLScom iPLS

spectral region (cm-1) 700-1200
2400-3000

700-1200 2400-3000 719-738 1013-1030 719-738
1013-1030

719-738
1013-1030

1012-1030
(1019-1029)

model dimensionality 9 9 9 5 5 6 5
RMSEP 0.0101 0.0092 0.0118 0.0052 0.0043 0.0050 0.0038 0.0043 (0.0046)

a PLS, full-spectrum PLS modeling with the given spectral region; PLSw, PLS modeling with the selected spectral intervals; PLScom, combination
of PLS models in the selected spectral intervals. The combination weights computed are 0.5315 and 0.4685, respectively, for models in the spectral
intervals of 719-738 and 1013-1030 cm-1; iPLS, the spectral interval and the corresponding RMSEP given by the iPLS algorithm. The values in
parentheses are those obtained directly by equidistant iPLS, and the values not in parentheses are those obtained after optimizing the selected
interval from equidistant iPLS.

Figure 3. OP/FT-IR spectra obtained at 8-cm-1 resolution in the
range of 700-3000 cm-1 for 100 mixture samples of methanol,
ethanol, 1-propanol, 1-butanol, and 2-propanol.
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again the fact that the performance of PLS can still benefit from
spectral interval selection. The spectra in the range of 700-1200
cm-1 are contaminated by the instrumental noise, as is indicated
by the fact that the PLS model based on the selected spectral
interval, 975-1130 cm-1, exhibits much better performance than
the full-spectrum model in the range and the PLS model built on
the spectral interval of 805-959 cm-1 gives the worst prediction
among all the models. Then, it is clear that the spectral interval
of 805-959 cm-1 contains the interference from non-composition-

related factors. Inclusion of this interval in calibration may
introduce undesired uncertainty into the model. Therefore, the
two full-spectrum PLS models involving this spectral interval and
the model based on three selected intervals show slightly
deteriorated performance compared to those excluding this
spectral interval. The only exception is the model based on the
combination of the PLS models built separately on these three
spectral intervals of 975-1130, 2826-2965, and 805-959 cm-1.
One can see that the model obtained by the combination of PLS
models based on three selected spectral intervals gives the
prediction as well as the model resulting from the combination
of PLS model built on two useful spectral intervals. In fact,
according to the combination weights calculated, these two models
obtained by combinations are very close to each other, since the
combination weight for the model constructed using the un-
informative spectral interval, 805-959 cm-1, is very small and the
combination weights for the two models based on the other two
selected intervals are approximately the same. This implies that
the procedure of model combination is capable of identifying the
goodness of each model and determining appropriate combination
weights for the models in light of the goodness of the model. As
a result, the proposed procedure for combining multiple models
may be a robust approach to exploit the information comprised
in individual models, even though some individual models are
constructed improperly. Interestingly, it is observed that iPLS also
gives an informative spectral window. However, this spectral
window is narrower than the corresponding one located by the
MWPLSR procedure. This is an indication that the postoptimiza-
tion of the spectral window from equidistant iPLS may get trapped
into local optimums, suggesting the MWPLSR algorithm is more
robust to local optimums than iPLS in ascertaining the best
spectral intervals. In addition, one can see that the spectral interval
found by iPLS shows slightly worse prediction performance than
the spectral region of 2826-2965 cm-1. This is due to the fact
that iPLS uses the same model dimensionality to explore the best
spectral intervals. As a result, the algorithm may be rather
sensitive to the choice of model dimensionality, and then increas-
ing the risk of missing the optimal spectral window associated
with slightly increased model complexity and yielding a sub-
optimal spectral interval.

It is noted that the prediction errors of the PLS model based
on the full spectral range of 2400-3000 cm-1 is desirably small
in this case, which is comparable with that of the model based
on the selected interval, 2826-2965 cm-1. This is due to the fact
that uninformative spectral regions in the range (2400-2826 and

Table 2. Results of PLS Modeling of OP/IR Data B for Ethanol Using Given Spectral Regions

PLS PLS PLS PLSw PLSw PLSw PLSw PLSw PLScom
a PLScom

b iPLS

spectral
region (cm-1)

700-1200
2400-3000

700-1200 2400-3000 975-1130 2826-2965 805-959 975-1130
2826-2965

975-1130
2826-2965
805-959

975-1130
2826-2965

975-1130
2826-2965
805-959

1006-1103
(1049-1083)

model
dimensionality

10 10 10 8 10 9 10 10 8

RMSEP 0.0047 0.0083 0.0023 0.0022 0.0019 0.0085 0.0012 0.0036 0.0015 0.0015 0.0029
(0.0043)

a The combination weights computed are 0.8557 and 0.1443, respectively, for models in the spectral intervals of 975-1130 and 2826-2965 cm-1.
b The combination weights computed are 0.8436, 0.1397, and 0.0167, respectively, for models in the spectral intervals of 975-1130, 2826-2965, and
805-959 cm-1.

Figure 4. Residue lines obtained by MWPLSR of the OP/FT-IR
spectra B for the calibration samples. The residue lines in the range
of (a) 700-1200 and (b) 2400-3000 cm-1.

Analytical Chemistry, Vol. 74, No. 14, July 15, 2002 3563



2965-3000 cm-1) have only very weak absorption or show strong
correlation to the informative region.

NIR Data. The spectra of the NIR data are shown in Figure
5. The NIR spectra of the samples are mainly attributed to the
overtone or combination bands of O-H and C-H groups, which

are very sensitive to the compositional variations in the samples.
With varying compositions of the liquid samples, the interaction
between different groups may slightly change and the NIR spectra
may deviate to a certain degree from the ideal linearity, which
constitutes the major source of errors in the measurements. Due
to the possible deviation of the NIR spectra from the ideal linearity,
it is expected that a model dimensionality more than the number
of components will be used in the PLS modeling.

The residue lines obtained by MWPLSR for the NIR data in
the whole spectral range of 1100-2498 nm are depicted in Figure
6a. One can see that the achievable error level (represented by
the SSR value) for the window-based PLS models is ∼10-2, and
there are three spectral intervals in which the window-based PLS
models approach the error level. The residue lines in these three
regions are replotted in Figure 6b-d separately to explore the
fine details. It is ascertained in Figure 6b that the spectral interval
between 1100 and 1218 nm is a useful region for the calibration,
and six latent variables are needed to build a PLS model reaching
the desired error level. This band arises from the second overtone
of the C-H stretching vibration. Figure 6c reveals that the spectral
interval of 1626-1858 nm is an informative region for modeling
the concentration of EtOAc, and the PLS model that gives the
desired error level has a model dimensionality of 7. As the bands
in the 1100-1218- and 1626-1858-nm regions originate from the

Figure 5. NIR spectra obtained in the range of 1100-2500 nm for
37 mixture samples of ethanol, ethyl acetate, 1-butanol, and n-butyl
acetate.

Figure 6. Residue lines obtained by MWPLSR of the NIR spectra for the calibration samples. The residue lines in the range of (a) 1100-
2500, (b) 1600-1850, and (c) 2160-2460 nm.
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second and the first overtones, respectively, of the C-H stretching
mode, the above findings may be the indication that the C-H
stretching mode is susceptible to the effect of interaction between
the constituents in the samples, and consequently, the C-H
stretching bands may deviate from the ideal linearity. Then
additional components have to be exploited in the PLS model to
address the compositional variations in the samples. From Figure
6d, two spectral intervals, 2216-2376 and 2388-2498 nm, can be
identified as the informative regions. The bands in the 2216-
2376-nm region are attributed to the combinations of C-H
vibrations. One can see that in the spectral region the residue
lines continue to lower down significantly until more than four
components are used for the PLS model. This is also due to the
fact that the band due to C-H combination bands is relatively
prone to being affected by the compositional changes in the
samples. The band of 2388-2498 nm may arise from the second
overtone of the C-H deformation mode. It is noticed that, when
the window is positioned in the spectral range, the window-based
PLS models approach the desired error level with only four
components. This may be an indication that the bands due to the
C-H deformation mode are relative stable to the compositional
variations in the samples. Based on the above finding, four spectral
intervals were selected and PLS models were then constructed
using the selected intervals for the quantification of EtOAc in the
samples.

It is noteworthy that two meaningful regions, 1400-1600 and
2000-2150 nm, where bands due to the first overtone of the O-H
stretching mode and those assigned to the O-H combination
mode are expected to appear, respectively, are identified as
uninformative regions by MWPLSR. This observation is self-
evident, since the analyte, EtOAc, does not have the O-H group.

The results of various PLS models built on the full spectra or
the selected spectral intervals are summarized in Table 3. A direct
PLS modeling on all the selected spectral intervals gives a RMSEP
of 0.0172, which is much better than the full-spectrum-based PLS
model. The performance of the PLS models built separately on
four selected spectral intervals varies according to the spectral
interval used. Better prediction is achieved for the PLS models
based on the spectral intervals of 1626-1858 and 2216-2376 nm,
while the PLS models constructed using the other two intervals,
1100-1218 and 2388-2498 nm, give inferior performance. This
suggests that the interference of random noise in the spectral
intervals of 1100-1218 and 2388-2498 nm may be relatively large.

Actually, in the combination of the PLS models built in the four
selected intervals, the combination weights for the models in the
regions of 1100-1218 and 2388-2498 nm are zero, which implies
that the two spectral intervals of 1100-1218 and 2388-2498 nm,
compared to the other selected regions, are less informative. In
addition, this demonstrates the built-in capacity of the proposed
approach of model combination to ascertain the goodness of an
individual model and handle improper models using small
combination weights. One also observes that the informative
spectral window given by iPLS is still narrower than the corre-
sponding one generated by MWPLSR, indicating that the post-
optimization step is trapped into a local optimum. Moreover, this
spectral window yields a slightly worse prediction than the spectral
region of 2216-2376 nm. This confirms the conclusion that iPLS
may miss some better spectral intervals associated with a slightly
increased model dimensionality.

CONCLUSIONS
The present study has demonstrated theoretically that de-

teriorated performance may be induced by the inclusion of
uninformative spectral regions in multicomponent spectral analy-
sis. The uninformative regions are typically characterized by the
increased model complexity in the PLS model that is built on these
regions. A new spectral interval selection method, MWPLSR, has
been proposed for the selection of informative spectral intervals.
Once multiple spectral intervals are selected, a novel modeling
approach, combination of multiple PLS models, has been devel-
oped. The results show that, with the elimination of uninformative
spectral regions using the proposed spectral interval selection
method, the performance of PLS calibration can still be signifi-
cantly improved. It is also disclosed that the model combination
approach provides a robust way to exploit the information
comprised in individual models, as it can avoid possible accumula-
tion of errors in multiple spectral intervals and can handle the
models of varying goodness via appropriate combination weights.
The model combination approach holds immense potential in
chemometric modeling and is expected to find novel implementa-
tions in other studies.
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Table 3. Results of PLS Modeling of NIR Data for EtOAc Using Given Spectral Regions

PLS PLSw PLSw PLSw PLSw PLSw PLScom
a iPLS

spectral region (nm) 1100-2498 1100-1218 1626-1858 2216-2376 2388-2498 1100-1218
1626-1858
2216-2376
2388-2498

1100-1218
1626-1858
2216-2376
2388-2498

1656-1750
(1660-1698)

model dimensionality 7 6 6 7 4 7 6
RMSEP 0.0394 0.0212 0.0179 0.0165 0.0295 0.0172 0.0157 0.0190 (0.0232)

a The combination weights computed are 0, 0.1277, 0.8725, and 0, respectively, for models in the spectral intervals of 1100-1218, 1626-1858,
2216-2376, and 2388-2498 cm-1.
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