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The discriminating variable (DIVA) test and the selectivity
ratio (SR) plot are developed as quantitative tools for
revealing the variables in spectral or chromatographic
profiles discriminating best between two groups of samples.
The SR plot is visually similar to a spectrum or a
chromatogram, but with the most intense regions corre-
sponding to the most discriminating variables. Thus, the
variables with highest SR represent the variables most
important for interpretation of differences between groups.
Regions with variables that are positively or negatively
correlated to each other are displayed as corresponding
negative and positive regions in the SR plot. The nonpara-
metric DIVA test is designed for connecting SR to dis-
criminatory ability of a variable quantified as probability
for correct classification. A mean probability for a certain
SR range is calculated as the mean correct classification
rate (MCCR) for all variables in the same SR interval. The
MCCR is thus similar to a mean sensitivity in each SR
interval. In addition to the ranking of all variables accord-
ing to their discriminatory ability provided by the SR plot,
the DIVA test connects a probability measure to each SR
interval. Thus, the DIVA test makes it possible to objec-
tively define thresholds corresponding to mean probability
levels in the SR plot and provides a quantitative means
to select discriminating variables. In order to validate the
approach, samples of untreated cerebrospinal fluid (CSF)
and samples spiked with a multicomponent peptide
standard were analyzed by matrix-assisted laser desorp-
tion ionization (MALDI) mass spectrometry. The differ-
ences in the multivariate spectral profiles of the two
groups were revealed using partial least-squares discrimi-
nant analysis (PLS-DA) followed by target projection (TP).

The most discriminating mass-to-charge (m/z) regions
were revealed by calculating the ratio of explained to
unexplained variance for each m/z number on the target-
projected component and displaying this measure in SR
plots with quantitative boundaries determined from the
DIVA test. The results are compared to some established
methods for variable selection.

Revealing the most discriminating variables in spectral or
chromatographic fingerprints acquired for complex multicompo-
nent samples represents a general analytical problem. The task
is important, e.g., for finding biomarkers in profiles acquired for
body fluids in proteomic and metabolomic/metabonomics
studies.1-4 A common approach to solve this kind of problem is
to collect samples from the different groups and compare them
using some kind of statistical tests or models. Linear discriminant
analysis (LDA), which maximizes the between-group variance to
within-group variance, was developed for this purpose by Fisher.5

However, for problems where the number of variables is larger
than the number of samples, LDA cannot be used without some
kind of dimension reduction.6 For such cases, principal component
analysis (PCA)7 is often used to look for discriminating patterns
in multivariate data. PCA may provide decent results when the
major variation in fingerprints represents between-group separa-
tion but is far from optimal when the major variation in the
instrumental fingerprints is mostly shared for samples from
different groups. When within-group variance dominates over
between-group variance, methods that utilize a priori information
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about the samples’ group belongings show better performance.
Partial least-squares discriminant analysis (PLS-DA)8 is such a
method. With two groups, a response variable is defined with
zeros for the samples from one group and ones for the samples
from the other group. Due to the use of a priori information about
group belongings, PLS-DA performs better in discriminatory
studies than PCA. This has been nicely demonstrated in a
simulation study executed by Barker and Rayens6 and was
recently proven by Liu and Rayens.9 However, similar to PCA,
PLS-DA may lead to interpretational problems since the separation
may require numerous PLS components, each one featuring the
whole instrumental profile. For this reason many approaches to
reduce the complexity of a PLS model by variable selection have
been developed, using, e.g., the size of the covariance between
the response and each instrumental variables (the so-called PLS
weights),10 size of regression coefficients,11 the variable impor-
tance in projection (VIP) approach,12 and selection of most
predictive regions using a combination of genetic algorithms and
PLS13 or PCA.14 Some of these approaches retain the “true”
dimension of the model, whereas others reduce the model
dimension by removing variance that is approximately orthogonal
to the response.

Another route to solve the interpretational problem is to
combine the PLS components into a single target-projected (TP)
component.15,16 The TP component represents the axis of maxi-
mum group discrimination for a PLS-DA model in the model space
and thus the reduction of the PLS-DA model to a single predictive
vector. This property provides simpler interpretation and is shared
by the so-called orthogonal partial least-squares (OPLS) method.17

Indeed, TP and OPLS only represent different algorithms to
achieve the same predictive component.18 The main objective of
TP and OPLS is to overcome the interpretational problem posed
by the orthogonal variation. Both TP and OPLS, however, are
modeling the covariance between the instrumental variables and
the response. Since variables large in absolute size usually also
have large variances compared to variables with small absolute
size, intense regions in spectra or chromatograms may dominate
the model even if their variance is almost orthogonal to the
response. Thus, since the variation in size between different
spectral or chromatographic regions can be several orders of
magnitude, the variables’ intensity on the component of optimal
group discrimination, in general, does not tell much about the

variables’ discriminatory ability. Wiklund et al.19 tried to remedy
the interpretational problem by introducing the S-plot, i.e., a plot
of correlation versus covariance between the instrumental vari-
ables and the predicted response. However, the problem is only
partially solved since the display becomes crowded when the
number of spectral variables increases. Another possible solution
to the interpretational problem is to scale the variables to equal
variance before modeling. However, this approach may blow up
noise since regions with little or no variance prior to scaling, i.e.,
low signal-to-noise (S/N) ratio, get the same variance as the most
intense regions after scaling. An alternative solution to the
interpretational problem was recently proposed by some of the
present authors.20 They calculated the ratio of explained to
unexplained variance for each variable on the interpretative
component and displayed these ratios similarly to a spectrum in
the so-called selectivity ratio (SR) plot. In this plot, the most
intense regions correspond to the variables with the best dis-
criminatory ability. A problem that until now remained unsolved
with the SR plot was to determine an objective limit to be able to
quantitatively assess the statistical significance of a particular
selection of discriminating variables. The present work addresses
this problem and shows that the introduction of a nonparametric
test to relate the selectivity ratio for each variable to mean correct
classification rate (MCCR) provides a statistically founded thresh-
old for variable selection. With the help of this discriminating
variable (DIVA) test, the investigator can choose the probability
level for his particular application to balance the risk of missing
important discriminating variables against the possibility of includ-
ing variables that result from chance correlations. This property
is of special importance for applications where the variable-to-
sample ratio is high. When plotting MCCR versus SR we obtain
the DIVA plot; a new quantitative plot for aiding interpretation
and variable (biomarker) selection.

In this work, we make another improvement to enhance the
interpretative aspects of the SR plot: By multiplying the selectivity
ratio with the sign of the corresponding regression coefficient, it
is possible to quickly detect which variables are larger or smaller
between groups. In metabonomics/metabolomics or proteomics
applications it is then easy to comprehend which variables are
up or down regulated.

THEORY
Latent-Variable Regression (LVR) of Instrumental Pro-

files. Let us assume that we have acquired instrumental profiles
on samples from two groups. Each sample is characterized by a
multicomponent profile of intensities at possibly tens of thousands
spectral variables or chromatographic retention times. Our task
is to decide which regions contain information with an ability to
discriminate the two groups of samples. By introducing a response
vector y of zeros and ones for the samples of the two groups,
regression analysis can be used to solve this task. Partial least-
squares discriminant analysis8 or principal component regression
(PCR)21 can be performed in order to reveal variable regions that
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(10) Höskuldsson, A. Chemom. Intell. Lab. Syst. 2001, 55, 23–38.
(11) Centner, V.; Massart, D. L.; de Noord, O. E.; de Jong, S.; Vandeginste,

B. M.; Sterna, C. Anal. Chem. 1996, 68, 3851–3858.
(12) Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wold, S. Multi- and

Megavariate Data Analysis: Principles and Applications; Umetrics: Umeå,
Sweden.

(13) Nørgaard, L.; Saudland, A.; Wagner, J.; Nielsen, J. P.; Munck, L.; Engelsen,
S. B. Appl. Spectrosc. 2000, 54, 413–419.

(14) Lavine, B. K.; Davidson, C. E.; Rayens, W. S. Comb. Chem. High Throughput
Screening 2004, 7, 115–131.

(15) Kvalheim, O. M.; Karstang, T. V. Chemom. Intell. Lab. Syst. 1989, 7, 39–
51.

(16) Kvalheim, O. M. Chemom. Intell. Lab. Syst. 1990, 8, 59–67.
(17) Trygg, J.; Wold, S. J. Chemom. 2002, 16, 119–128.
(18) Kvalhem, O. M.; Rajalahti, T.; Arneberg, R. J. Chemom. 2009, 23, 49–55.
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discriminate between the two groups. In order to correct for
noncompositional variation in the instrumental profiles, the profiles
have to be pretreated before carrying out the regression analysis.
The pretreated and centered matrix X with each row describing
a sample and each column corresponding to intensities for one
variable is decomposed into a product of two matrices and a
residual matrix E. The two matrices are the orthogonal score
matrix T and the loading matrix P.

Equation 1 also shows the alternative description of the latent-
variable decomposition of X as a sum of products of score {ta}
and loading {pa} vectors; a ) 1, 2,..., A. Superscript T implies
transposition. Vectors are by default column vectors. Transposi-
tion transforms a column vector into a row vector. A is the
number of extracted latent variables and is commonly deter-
mined by cross-validation.22

Target Projection. Whether PCR, PLS-DA, or other methods
are used, the resulting decomposition usually consists of many
components. This leads to difficulties for the interpretation of the
model. Kvalheim and Karstang15 developed a procedure called
target rotation or target projection to simplify the interpretation
of latent-variable regression models. Target projection produces
a single predictive component by projecting the latent-variable
decomposition onto the response variable. The target projection
model can be written as

The subscript TP denotes the latent variable obtained by target
projection. Scores and loadings for the TP model can be calculated
from the decomposition given by eq 1.15,16,18

It has previously been shown20 that the target-projected
loadings are proportional to the product of the vector of regression
coefficients bPLS and the covariance matrix (XT X). Thus,
covarying variables on the discriminatory axis get enhanced
loadings. This is an excellent property for the purpose of
revealing variables strongly correlated to the response variable
of group belongings: such variables will mutually strengthen
each other. This is an important property since it means that
discriminating variables small in absolute size will be enhanced
due to their correlations with the other discriminating variables.

Variable Selection by Means of Discriminating Variable
Test and Selectivity Ratio Plot. From eq 2, we can calculate
explained vexpl,i and residual vres,i variance for each spectral
variable i in the TP model. From this we can define a selectivity
ratio, SR, for each spectral variable i:

The selectivity ratio can be displayed similarly to a spectrum.20

The higher the value, the better the spectral variable discrimi-
nates between two groups of samples. Thus, the selectivity ratio
can be used to quantitatively rank variables according to
discriminatory ability. This is a valuable property for variable
selection in general and maybe in particular for applications
where the ratio of the number of variables to the number of

samples is high. This situation is commonly encountered when
we are searching for biomarkers in a complex profile of
hundreds of chemical components. We are then facing the
problem of being able to draw boundaries between probable,
less probable, and improbable biomarker candidates. In other
words: we need a tool to balance the possibility of including
many false biomarker candidates against the possibility of
missing important biomarkers.

A possible solution to define a boundary between variable
regions with high discriminating ability and less interesting
regions could be by comparing explained to residual variance in
an F-test. In order to conclude that the variable has a high
discriminatory ability, the explained variance on the TP component
has to be significantly higher than the residual variance for a
variable after removing the systematic variance explained by the
TP component. This is the same as asking the question: for which
variables have the introduction of the TP component explained
enough variance to say that the variable has high discriminating
ability? The answer of course depends on sample size N and
chosen probability level R for the F-test. In order to reject the
null hypothesis that explained and residual variance are the same,
the calculated F value, Fcalc, which is equal to SRi from eq 3,
has to exceed the critical value for the F distribution, Fcrit.:

The number of degrees of freedom for the numerator (ex-
plained variance) in eq 3 is equal to the sample size N minus one
degree of freedom due to the calculation of the variable’s mean
and one due to the introduction of the target component (N - 2).
For the denominator (residual variance) one extra degree of
freedom is lost because we have to subtract the explained variance
from the original variance of the variable. Thus, the remaining
degrees of freedom for the denominator are (N - 3).

Since Fcrit converges toward one with increasing sample size
N, an implicit assumption for this F-test is that selectivity ratios
below one will not show good discriminatory ability. This is a
rather strong assumption since it may well be possible that
samples can be partially separated even if the predictive
between-to-within group variance is significantly lower than one.
Therefore, we propose to introduce a nonparametric test where
the probability is derived directly from a measure of how well
all variables within a certain SR interval separate two groups
of samples. A good measure can be obtained by calculating
the correct classification rate (CCR) for all variables. Com-
pletely random classification of the two groups on a variable
corresponds to 50% CCR with equal number of samples in each
group. On the other hand, if a variable separates the two groups
completely, one group of samples is located on the low side of
the values of that variable and the other group of samples is
located on the upper side of the values. Such a variable is on
top of the performance ladder with CCR of 100%. It is obvious
that SR and CCR must be intimately correlated: increasing SR
should provide increasing CCR since SR is a measure of the
variables performance for separating groups. If we calculate
CCR for all the variables, we can define selectivity ratio intervals
and calculate an MCCR and its standard deviation for the
variables in each SR interval and plot MCCR versus SR for the
whole range of selectivity ratio intervals. This DIVA plot

(22) Bro, R.; Kjeldahl, K.; Smilde, A. K.; Kiers, H. A. L. Anal. Bioanal. Chem.
2008, 390, 1241–51.

X ) TPT + E ) t1p1
T + t2p2

T+...+tApA
T + E (1)

X ) X̂TP + ETP ) tTPpTP
T + ETP (2)

SRi ) vexpl,i/vres,i i ) 1, 2, 3, ... (3)

Fcalc ) SRi>Fcrit ) F(R,N-2,N-3) (4)
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provides an opportunity to objectively choose a threshold for
discriminatory ability that balances the risk of missing impor-
tant variables against the risk of selecting many variables
resulting from chance correlations. (See the Results and
Discussion for an example of a DIVA plot.)

From the nonparametric DIVA test we can obtain probability-
based boundaries for the SR plot. This provides a quantitative
display for assessing the discriminatory ability of all regions in a
complex variable profile. Furthermore, we can take advantage of
the fact that the sign of the regression coefficient for a variable
shows if a variable increases or decreases between two groups of
samples on the TP component. By multiplying the selectivity ratios
with the sign of the corresponding regression coefficients, the
SR plot quantitatively displays all important features for interpret-
ing the target component and making an objective selection of
discriminating variables (e.g., biomarkers).

DIVA Test and SR Plot for the Multiple Group Case. We
have developed the theory for the DIVA test and SR plot for cases
with two groups. Is it possible to generalize the approach to
applications with multiple groups? First, we have to notice that
there are different types of multiple group situations. For instance,
in metabolomic or proteomic applications, we can have a group
of healthy controls and groups of patients defined by different
stages of the pathogenesis of the same disease, or we can have a
group of healthy controls and several groups with different
diseases. In the former case, we can define a single-response
vector with values reflecting the development of the disease, e.g.,
zero for controls, one for first stage, two for second stage, and so
on. The generalization of the DIVA test and the SR plot to handle
this case is straightforward. An underlying assumption is that the
different disease stages represent a continuous and gradual
development that is reflected in the instrumental profiles. If this
is not the case, a better solution may be to let the group of controls
and a selected stage define the response and use the derived
model to relate the pathogenesis to predicted responses for the
other stages. In the latter case, where the signatures of different
diseases have to be compared to healthy controls and the other
disease, there is no mean to rank samples on a single response
and pairwise comparison is the most optimal way of using the
proposed approach. If prediction of group belonging for new
samples is the aim, a possible continuation is to model each group
independently on the selected features and fit new samples to
each group to find the group providing best fit for each sample.7

Relation between ROC and the DIVA Plot. A receiver
operating characteristics (ROC) or ROC curve is a bivariate plot
of sensitivity versus (1 - specificity) in a binary classification.
Sensitivity measures the fraction of actual positives which are
correctly identified as such, whereas specificity measures the
proportion of negatives which are correctly identified. Since the
CCR is identical to sensitivity in a binary classification, the MCCR
can be interpreted as a mean sensitivity for the variables within a
certain SR interval. Thus, the DIVA plot connects classification
performance to variables’ ratio of between-to-within group variance
in a quantitative manner and expands the ROC curve into the
multifeature domain.

EXPERIMENTAL SECTION
Peptide Standard. Peptide calibration standard was pur-

chased from Bruker Daltonics. The peptide calibration standard

contained polypeptides with reference m/z values and names listed
in Table 1. In the peptide standard, each polypeptide had a
concentration of 4 pmol/µL.

Samples. Cerebrospinal fluid (CSF) was drawn from patients
undergoing spinal anesthesia for lower extremity orthopedic
surgery. About 2-3 mL of CSF was drawn from each patient. The
CSF was immediately centrifuged at 450g for 10 min to remove
cells and thereafter stored at -80 °C. CSF from all individuals
was randomly partitioned into five groups. One group labeled 0
pM was selected as reference. CSF from the other four groups
was spiked with 50, 100, 200, or 400 pM peptide standard. Each
sample was fractionated in duplicates through individual 30 kDa
molecular weight cutoff (MWCO) filters. Triplicates of 5% of the
resulting concentrated flow-through fractions were spotted onto
the MALDI plate and analyzed. For further details on sample
preparation prior to mass spectrometry (MS) profiling see Berven
et al.23

Matrix-Assisted Laser Desorption Ionization Time-of-
Flight Mass Spectrometry (MALDI-TOF MS) Analysis. The
low molecular weight (MW) fractions were analyzed using an
AutoFlex (Bruker Daltonics) mass spectrometer in a positive linear
mode. Data were acquired in the range of 740-9000 Da. The
parameter settings for the mass spectral profiling of the low MW
fraction were the following: laser frequency 20 Hz, ion source I
20 kV, pulsed ion extraction 250 ns with ion suppression up to
500 Da. No real-time smoothing was performed. The analyses were
performed using the AutoXecute mode with the following setup:
20 initial uncollected shots at 35% laser power, followed by 100
shots that were collected. This was repeated at different positions
until a total of 600 shots had been collected. The laser power was
varying between 20% and 24% for the different experiments. The
spectra were automatically collected if the signal-to-noise ratio was
evaluated by the FlexControl software (version 2.0, Bruker
Daltonics) in AutoXecute mode to be above 3, with a peak
resolution of 200.

Data Sets. Each spectral profile acquired was described by
intensities at 44 403 m/z numbers, starting at 740.04 Da and
increasing in steps of 0.186 to 8999.84 Da. This provided a data
set consisting of approximately 170 spectral profiles for the
reference samples (0 pM) and approximately 50 spectra for each
of the samples spiked with 50, 100, 200, or 400 pM.

(23) Berven, F. S.; Kroksveen, A. C.; Berle, M.; Rajalahti, T.; Fikka, K.; Arneberg,
R.; Myhr, K.-M.; Vedeler, C.; Kvalheim, O. M.; Ulvik, R. J. ProteomicssClin.
Appl. 2007, 1, 699–711.

Table 1. Composition of Peptide Standard Used for
Spiking of CSF

m/z value name

1047.20 angiotensin II
1297.51 angiotensin I
1348.66 substance P
1620.88 bombesin
2094.46 ACTH clip 1-17
2466.73 ACTH clip 18-39
3149.61 somatostatin 28
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Data Analysis/Pretreatment. The data were pretreated in
accordance with the recommendation by Arneberg et al.24 Base-
line correction was performed using the FlexAnalysis software
from Bruker Daltonics. This produced some regions with negative
intensities, and therefore the profiles were independently shifted
by the absolute value of the largest negative intensity in each
profile prior to further pretreatment. Prior to alignment, binning
was performed by adding the intensities of five consecutive m/z
numbers. This reduced the number of variables from 44 403 to

8881 and, in addition, provided a smoothing of the spectra.
Alignment was executed by using the algorithm of Wong and

(24) Arneberg, R.; Rajalahti, T.; Flikka, K.; Berven, F. S.; Kroksveen, A. C.; Berle,
M.; Myhr, K.-M.; Vedeler, C.; Ulvik, R. J.; Kvalheim, O. M. Anal. Chem.
2007, 79, 7014–7026.

Figure 1. (A) Spectral profiles for the mass range of 740-9000 Da after pretreatment (8881 binned m/z numbers): reference CSF sample in
red, CSF sample spiked with 100 pM peptide standard in blue. (B) Zoomed profiles.

Table 2. Modeling Results for the Different Sample
Groups (0 pM vs 50-400 pM)

group (pM) no. of spectra Aa R 2(XPLS-DA)b R 2(XTP)c R 2(y)d

400 50 12 71.9 3.0 98.2
200 51 12 71.8 2.3 98.1
100 53 12 73.1 4.8 98.1
50 53 12 72.1 2.2 97.6

a A ) number of components. b R2(XPLS-DA) ) explained variance in
X for PLS-DA model. c R2(XTP) ) explained variance in X for TP model.
d R2(y) ) explained variance in y for PLS-DA and TP model.

Figure 2. PLS-DA score plot for reference samples (red) and
samples spiked with 100 pM peptide standard (blue).
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co-workers25,26 using a window size of 20. Transformation from
heteroscedastic to homoscedastic noise was carried out by a
square root transform.24,27 Normalization was performed to unit
length. Representative spectra from the low mass range are
displayed in Figure 1. All models were validated using cross-
validation and permutation testing28,29 on the response.

Software. The MALDI-TOF sampling and preanalysis (base-
line correction) were performed using FlexAnalysis. Sirius version
8.0 from Pattern Recognition Systems was used for all additional
analysis.

RESULTS AND DISCUSSION
Multivariate Analysis of Mass Spectral Profiles. Parts A

and B of Figure 1 show spectra from a reference CSF sample
and one sample with 100 pM peptide standard. There are
differences between these spectra, but as shown in the following
analysis, these differences are not due to the added multicompo-
nent peptide standard but reflect natural variation in CSF composi-
tion in humans.

In order to remove outlying spectra from the data, PCA was
performed for each group of samples, i.e., reference samples and
samples spiked with 50, 100, 200, or 400 pM peptide standard.
Six principal components were used for outlier detection, account-
ing for 65-70% of the variance in the data sets. Hotelling’s T2

and plots of residual standard deviation versus leverage were
used to detect outliers. A total of 5-10% of the spectra showed
features that made it necessary to remove them as outliers.

After removal of outliers, the remaining spectra from each
group of spiked samples were combined with the spectra from
the group of reference samples. The number of samples differs
slightly from group to group due to different number of
analyzed samples and outliers removed (Table 2). For each
group of spiked samples, a PLS-DA model was calculated with
the group belonging as the response: zero (0) for the reference
samples and one (1) for the spiked samples. Cross-validation was
used to determine the number of significant PLS components in
each model. The validation was performed by randomly selecting
50% of the samples as external validation set and repeating the
analysis 10 times. The optimal number of components varied from
run to run in the range of 10-13 components. We decided to use
12 components for all models. This choice gave explained variance
in the range of 71.8-73.1% for the mass spectral data and in
the range of 97.6-98.2% for the response discriminating reference
samples from spiked samples (Table 2). The 12 component models
were finally validated by permutation testing.28,29 For each of the
four PLS-DA models, target projection was performed to obtain a
one-component predictive model. The target component repre-
sents the axis of optimal discrimination in the multivariate space
spanned by the PLS model. Thus, the variance orthogonal to the
response is removed and interpretation can be obtained on a single
component. The variance in mass spectral profiles explained by
the target component varies in the range of 2.2-4.8% for the four
PLS-DA models (Table 2).

Analysis of Spectra from Reference Samples and Samples
Spiked with 100 pM Peptide Standard. The results for the
analysis of the combination of reference samples and samples
spiked with 100 pM peptide standard are now presented. The two
groups are not at all separated on any pair of extracted PLS-DA
components, and the result for the two dominant components is
shown in Figure 2. Figure 3 shows the scores on the target
component. Excellent separation is observed. The reference
samples are all negatively correlated to the spiked samples. The
question is which of the variables are responsible for this
separation and at which probability level? In order to answer this
question, the SR and the percent CCR were calculated for all the
8881 binned m/z numbers. Completely random classification of
the two groups on a variable corresponds to 50% CCR with equal
number of samples in each group. This means that the reference
and spiked samples have values ranging from the lowest to highest
value on that variable and that the samples are randomly located
on that variable. Such variables have no discriminatory ability at
all. On the other hand, if a variable separates the two groups
completely, all the samples of one group have lower values on
that variable than the lowest value of that variable in the other
group. Such a variable is on the top of the performance ladder
with an ability to completely separate the two groups.

The 8881 binned m/z numbers were sorted according to their
SR values. Mean correct classification rates and the standard
deviation of MCCR were calculated for SR intervals of 0.1 from 0
up to 1.0. For SR higher than 1.0 the interval was increased to
0.25. Figure 4 shows MCCR plotted versus SR; i.e., the DIVA plot.
In addition to probability for correct classification, boundaries
corresponding to one standard deviation are also shown in the
DIVA plot. Not surprisingly, MCCR increases almost monoto-
nously with increasing SR until it levels out in intervals with

(25) Wong, J. W. H.; Durante, C.; Cartwright, H. M. Anal. Chem. 2005, 77,
5655–5661.

(26) Wong, J. W. H.; Cagney, G.; Cartwright, H. M. Bioinformatics 2005, 21,
2088–2090.

(27) Kvalheim, O. M.; Brakstad, F.; Liang, Y.-Z. Anal. Chem. 1994, 66, 43–51.
(28) Van der Voet, H. Chemom. Intell. Lab. Syst. 1994, 25, 313–323.
(29) Smit, S.; van Breemen, M. J.; Hoefsloot, H. C. J.; Smilde, A. K.; Aerts,

J. M. F. G.; de Koster, C. G. Anal. Chim. Acta 2007, 592, 210–217.

Figure 3. Scores on the target-projected (TP) component for
reference samples (red) and samples spiked with 100 pM peptide
standard (blue). PLS-DA model with 12 components transformed to
produce the best possible single-component predictive model.
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relatively high SR, i.e., variables with high between-to-within group
variance and thus good discriminatory ability. Since MCCR
corresponds to the mean probability of correct classification of
the samples for each SR interval, we observe that variables with
SR above 0.5 provide discrimination at a probability exceeding
80%, whereas MCCR converges toward 99% when SR approaches
2.0. Note also that standard deviation of MCCR gradually
decreases with increasing SR values as expected since differences
in misclassification decrease with increasing SR. For high SR,
some intervals may have zero values since there may be no
variables with SR in that range. In such cases, we interpolate
between points and the standard deviation is set to zero. Figure
4 shows two such regions, one with SR in the interval of 1.0-1.5,
and one with SR in the interval of 2.0-3.0.

Discriminating Variables and SR Plot. The relationship
between SR and MCCR, and the interpretation that MCCR
measures the discriminatory ability of the variables in a certain
SR interval, provide the possibility of introducing probability-based
boundaries in the SR plot. Figure 5 shows the SR plot with
boundaries for the 8881 binned m/z numbers in the mass spectral
profiles used to characterize the low MW fraction of the CSF
samples. We have multiplied the selectivity ratios with the sign
of the regression coefficients of the PLS-DA/TP model in order
to make visible which variables are larger or smaller in the two
groups of samples. Two regions of m/z numbers are revealed with
almost perfect discriminatory ability between the reference
samples and spiked samples. These two regions have SR in the
range of 4.8-5.5 and are located in m/z regions 1048 and 1298.
From Table 1 these signals are identified as originating from the
peptides angiotensin II and angiotensin I. Just around SR ) 0.75
(corresponding to 85% MCCR), we find a region corresponding

Figure 4. Discriminating variable (DIVA) plot for the TP model calculated using the reference samples and the samples spiked with 100 pM
peptide standard: percent mean correct classification rate (MCCR) (thick line) and standard deviation of MCCR (thin lines).

Figure 5. Selectivity ratio (SR) plot for the TP model calculated using
reference samples and the samples spiked with 100 pM peptide
standard. SR ) 0.5 is marked by horizontal lines. The m/z numbers
with a selectivity ratio exceeding this limit are marked in red. These
are biomarker candidates at 80-85% MCCR, i.e., p ) 0.15-0.2.

Figure 6. PCA score plot after variable selection using a probability
level corresponding to p ) 0.15-0.2 (SR ) 0.5). Less than 0.3% of
the original number of variables (i.e., 25 binned m/z numbers) is
selected. Reference samples are in red, and spiked samples are in
blue.
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to m/z ratio of 2468. Table 1 shows that this signal corresponds
to ACTH clip 18-39. The other peptides in the added standard
are not visible above the threshold corresponding to SR ) 0.5,
i.e., 80-85% MCCR.

Variable Selection Using the DIVA Test and SR Plot. We
can use the probability distribution obtained from the DIVA test
for variables selection. Figure 6 shows the PCA score plot for
variable selected according to a probability level corresponding
to p ) 0.15-0.2 (SR ) 0.5). Excellent separation is obtained with
only 25 binned m/z numbers, i.e., less than 0.3% of the original
number of variables. The larger spread of spiked samples reflects
the experimental variation resulting from spiking with small
volumes of samples available. If the variable selection is performed
in order to select biomarkers for further investigation, the
investigator has to decide what probability level to use. A choice
of, e.g., p ) 0.1 compared to, e.g., p ) 0.25, means that the risk
of assigning false biomarkers is decreased on the expense of the
possibility of leaving out some real biomarkers. The choice may
depend on other factors than just statistical significance. For
instance, a criterion based on the actual amount of work to further
investigate the selected biomarkers may be of practical concern,
and then a limit providing fewer rather than more biomarker
candidates may be more practical.

Comparison with Other Methods for Variable Selection.
As discussed in the introduction, numerous methods exist for
variable selection. The methods differ in aims as well as perfor-
mance. In the following, we compare the result of our selection
with the result of three other methods for variable selection that
are commonly used by PLS-DA practitioners and also implemented

in many of the available software packages. The three methods
are PLS weights,25 size of regression coefficients,26 and VIP.27

The results for these methods together with the SR plot are
displayed in Figure 7. For each method, we have defined
thresholds of selections. For PLS weights and regressions coef-
ficients, we select the variables exceeding two standard deviations
around the mean. This choice, which is rather conservative, still
leads to too many false biomarker candidates. For VIP, Figure
7C shows that the recommended threshold of 1.027 for selection
leads to a forest of false biomarker candidates. If we increase the
threshold, the number of false candidates is reduced, but we also
start to lose real biomarkers. The SR plot with boundaries
corresponding to 80% MCCR (SR ) 0.5) provides only correct
candidates.

One may argue that even if too many variable regions are
selected, this may not influence the classification results. In order
to assess this possibility, we have used PCA on the selected
regions for the model with reference samples and samples spiked
with 100 pM peptide standard. The result is shown in Figure 8.
By using retaining variables for which PLS weights exceed two
standard deviations from the mean, 90 variables were selected.
We observe strong overlap between groups on the two dominant
principal components which explain almost two-thirds of the
variation in selected variables. The result of using absolute size
of regression coefficients as selection criterion is much better
(Figure 8B). A total of 39 variables were selected providing a
separation into two groups. If we compare the classification with
the results from SR plot (Figure 6), however, we note that the
group of controls has spread out. This is a consequence of

Figure 7. Comparison between different variable selection plots: (A) covariances between spectral variables and group belongings (PLS
X-weights), (B) regression coefficients, (C) VIP (variable importance in projection) plot, and (D) selectivity ratio plot from target projection.
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inclusion of orthogonal variation, i.e., variables with large regres-
sion coefficients unrelated to the response have been incorporated.
The selection using VIP with threshold 1.0 results in 1615
variables, and complete overlap of groups is observed (Figure 8C).
If we increase the threshold to 5.0 and redo the selection, some
tendency of grouping is observed (Figure 8D), but still orthogonal
variation impacts the results and, in addition, real biomarkers are
lost in the selection process. We conclude that our novel approach
is superior to well-established methods for variable selection in
PLS-DA.

Results for the Other Models. The same analysis as above
for reference and group with spiked with 100 pM standard was
performed for the other three models. The results were similar
and are therefore not shown here. However, for the model with
samples spiked with 400 pM peptide standard, a variable with SR
≈ 1 was observed around m/z 3620. This would correspond to a
false biomarker candidate and is to be expected with the number
of variables outsizing the number of samples with a factor of 50.

Furthermore, for the model with samples spiked with 50 pM
peptide standard, the highest SR is 1.5 and the SR for ACTH clip
18-39 falls below the probability level for being identified as an
important discriminating variable. These observations result from
the depletion effect of spiking with smaller and smaller amounts
of peptide standard.

Comparison of the DIVA Distribution for All Models. We
can compare the results for the four models by plotting MCCR
versus SR. Figure 9 shows this plot based on the models obtained
from combining reference samples with samples spiked with 50,
100, 200, or 400 pM peptide standard. There are no selectivity
ratios higher than 1.5 for the 50 pM model due to the small
amount of added peptide standard. Otherwise, the probability
distribution is strikingly similar for all models showing that for
the same type of instrumental technique and same type of samples
the nonparametric DIVA test appears to be reasonably robust.
This observation indicates that it may be possible to come up with
approximate estimates of significance levels to be used in the SR

Figure 8. PCA score plot after variable selection using (A) covariances between spectral variables and group belongings (PLS X-weights), (B)
regression coefficients, (C) VIP (variable importance in projection) plot with recommended limit of 1.0 for selection, and (D) VIP plot with a limit
of 5.0 for selection. Reference samples are in red, and spiked samples are in blue.
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plot without the need to run the DIVA test for each new data set
in similar applications.

CONCLUSIONS
Numerous methods for variable selection in multivariate

classification and regression problems have been devised. In this
work, we have designed a nonparametric test that provides a
probability measure to guide selection of variables (e.g., biomar-
kers) from complex multicomponent profiles ensure variables with
both good explanatory and good predictive performance.

The probability level quantifies the discriminatory ability of a
variable and, in a binary classification, corresponds to a mean
sensitivity for the variables within the same selectivity ratio
interval. This mean sensitivity is strongly correlated to the
selectivity ratio, a property that furnishes quantitative limits for
the discriminatory ability of variables. By using the information
of negative and positive correlations between variables in two
groups of samples the selectivity ratio plot displays which variables
are increasing or decreasing from one group of samples to the
other. Thus, in biomarker applications, the SR plot shows which
candidates are up or down regulated.

The SR plot with probability boundaries obtained from the
nonparametric DIVA test provides the investigator with an
excellent objective tool to assist the selection of discriminating
variables/biomarker candidates for further exploration. Selecting
variables according to a low limit for the selectivity ratio increases
the risk of selecting false candidates, whereas a high limit for the

selectivity ratio increases the risk of loosing potential candidates.
Due to the continuous nature of the distribution of the probabilities
available from the DIVA test, the investigator can make a rational
choice for the limit between interesting and less interesting
variables to fit his particular application and the resources and
possibilities he has for further investigations.
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Figure 9. Percent mean correct classification rate (MCCR) for the TP models calculated from the reference samples and the samples spiked
with 50 (red), 100 (blue), 200 (lilac), or 400 pM (turquoise) peptide standard.
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