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A new method for the elimination of uninformative vari-
ables in multivariate data sets is proposed. To achieve
this, artificial (noise) variables are added and a closed
form of the PLS or PCR model is obtained for the data
set containing the experimental and the artificial variables.
The experimental variables that do not have more impor-
tance than the artificial variables, as judged from a
criterion based on the b coefficients, are eliminated. The
performance of the method is evaluated on simulated
data. Practical aspects are discussed on experimentally
obtained near-IR data sets. It is concluded that the
elimination of uninformative variables can improve pre-
dictive ability.

The quality of a multivariate calibration model depends, among
others, on the quality of the objects and the quality of variables.
Potential sources of problems can be the presence of inhomoge-
neities (outliers or clusters) and the presence of noisy or random

THEORY
(1) Partial Least Squares (PLS). A PLS® model expresses

the relation between a set of predictors X (n, p) and a variable y
(n, 1) as

y=Xxb+e 1)

where b (1, p) is the vector of PLS regression coefficients and e
(n, 1) is the vector of errors that cannot be explained by the model.

In the original PLS method all variables are used; PLS is a
so-called full-spectrum method. However, one can wonder whether
it is useful to include all variables, because some of them may be
noisy and/or contain nonrelevant information. We will, in this

article, call such variables uninformative. Intuitively it would seem
that better results should be obtained if such variables were
eliminated. It should be noted that the goal in this article is not
a variable selection in the sense that one tries to find the best
(small) subset of variables for fitting or prediction of a model,

variables. The detection of inhomogeneities was the subject of
the previous paper;! in the present article the attention will be
focused on the quality of variables.

A method is proposed to eliminate those variables that are
clearly uninformative since they do not contain more information
than random variables. Such variables must lead to less precision
(higher variance due to an imbedded error?® ) and, as shown by
Faber et al.,®* to a higher bias in the eigenvalues that reproduce
the data matrix X by the correct number (A) of eigenvectors. The
variance and bias both limit the predictive ability of the model
(RMSEP). Therefore, the model built after the elimination of
random variables, should be better.
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but the elimination of those variables that are useless.

Faber et al.? published an error propagation study in principal
component analysis. He described how uncertainties are carried
over from the data to the estimated parameters and what the
influence is of the measurement error and of the number of
variables on the bias of the eigenvalues,®* on the model complex-
ity,® and on the variance’ of the eigenvalues. The bias in the ath
eigenvalue (b;,) has been defined?® as

b, =4, = 2, = (n+p— Aoy )

where fla is the biased estimate of the ath eigenvalue 4,, n and p
are the numbers of objects and variables, respectively, A is the
correct dimensionality (i.e., pseudorank), and on is the measure-

(5) Martens, H.; Naes, T. Multivariate Calibration; Wiley: Chichester, 1989.
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ment error. It is evident that a large measurement error (om)
and a large number (p) of (uninformative) variables will increase
the bias in the eigenvalues and therefore also the model bias.

A number of methods to delete uninformative variables have
been described in the literature. Martens® suggested replacing
small loadings by zeros. A similar method called intermediate
least squares (ILS) was described by Frank® and modified by
Lindgren.®10 In interactive variable selection (1VS) the uninforma-
tive variables are detected for each PLS dimension by applying a
threshold procedure to the vector of PLS weights. It was also
shown by us!! that deleting variables with small b coefficients in
a model obtained with autoscaled data can be useful. Other
methods are more directed toward variable selection, but those
that could probably be used in variable elimination are due to
Baroni'?®3 and Frank.* A weakness of all these methods is the
estimation of a suitable number of variables (cutoff level). No
explicit rule exists up to now. As a result, all approaches work
with a user-defined number of variables or with a user-defined
critical value for the considered selection criterion.

(2) Uninformative Variable Elimination by PLS (UVE-
PLS). The method proposed here is based on an analysis of the
b regression coefficients in eq 1. On the one hand, one can use
the absolute values of the b coefficients in a model obtained for
autoscaled data (by,), as we did in ref 11. On the other hand, one
can look at the reliability ¢ = b/s(b) of the b coefficient for only
centered data. Both methods are studied and compared here,
but the theory is concentrated on the latter. The reliability
criterion c is based on an analogy with stepwise MLR. The fitness
to enter the jth variable in MLR is determined by the ratio of the
regression coefficient b; and its standard deviation s(b;):

¢ =by/s(b) for j=1,..,p (©)

The s(b;) for PLS coefficients cannot be computed directly.
Therefore we propose to estimate b; as a mean and s(b;) as a
standard deviation from the vector of n bj; coefficients obtained
by (leave-one-out) jackknifing (i = 1, .., n). A robust variant is
discussed further.

Another problem is how to estimate the cutoff level, below
which the ¢; (or any other criterion) are too small, without having
to predefine it. It is proposed here to use artificial random
variables, added to the data set and to compute their ¢ values. As
such variables should not be included in the model, because they
represent (artificially added) noise, their ¢; values will be indicative
of the values that can be reached by uninformative variables. In
this way, one should be able to obtain an appropriate estimate of
the cutoff level. The experimental variables j that give c; smaller
than the maximum c value obtained for the artificial variables (Cari)
can then be considered uninformative: if abs(c;) < abs(max(Carir))
the jth experimental variable is eliminated from the data (see
Figure 1). A variant to this procedure is discussed further.
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(13) Baroni, M.; Constantino, G.; Cruciani, G.; Riganelli, D.; Validi, R.; Clementi,
S. Quantit. Struct.-Act. Relat. 1993, 12, 9—20.
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Figure 1. Plot of ¢ for experimental (1—499) and artificial random
(500—998) variables. The cutoff level at max(abs(carir)) is indicated
by the solid line.

The noise in the added artificial random variables should not
be too large so that these variables do not influence the model.
Indeed, as shown by Faber et al.® the imbedded error and the
bias in eigenvalues depend on the measurement error. If it is
artificially made too large by adding uninformative variables, then
the error in the first eigenvalue would become so large that the
second and following eigenvalues would also be affected, thereby
having an effect on the b values for the variables in the original X
matrix. This then could lead to rejection of wrong variables. It is
therefore necessary to minimize this phenomenon by the multi-
plication of the artificial variables by a constant close to zero (for
the absorbance data where the magnitude of the real variables is
in the range of 0.0—1.0, the constant should be an order of
magnitude smaller than the imprecision of the instrument, i.e., 1
x 1074 The proposed value here is 1 x 1071%). The random
variation in the artificial variables, needed for the computation of
s(by) is retained, but its influence on modeling is negligible.

The UVE-PLS algorithm can be summarized as follows:

1. Determination of the optimal model complexity (A) on X,
with the lowest RMSEP as the criterion!®

RMSEP = ($ (9; — y)*/n)*"? (4)

2. Generation of the artificial variable matrix R and its
multiplication by a small constant (107%). This yields the matrix
R (n, p) with the number of variables p equal to the number of
variables in X. The a priori probability to make an error in
selection, i.e., to eliminate an informative or to retain an uninfor-
mative variable is then the same in both X and R. Inclusion of R
with X (n, p). The resulting matrix is called XR (n, 2p), the p
first columns being those of X and the p last ones being those of
R.

3. Calculation of PLS models for XR according to a leave-one-
out procedure. The number of factors retained (A) is the same

as for X. This yields n PLS models each with 2p regression

coefficients b. They are collected in a matrix B (n, 2p).

(15) Thomas, V. Anal. Chem. 1994, 66, 795—804.
(16) Mattal; Referernce Guide, T e MathWorks, it -Soutir Natick, MA, 1992.
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4. Determination for each variable j (i.e., both the experimental
and random variables) of bj (b; = z{‘zlbij/n), i.e., the mean of the
column vector j from B and the standard deviation of that column
vector

n

s(by) = (_ (b — bj)z/(n — 1)) 5)

5. Determination for each variable j of the criterion ¢; = b/
s(by).

6. Determination of max(abs(carir)), i.e., the highest absolute
value of ¢ among all ¢ for artificial variables.

7. Elimination from X of the experimental variables for which
abs(c;) < abs(max(Carir)), for j=1, .., p. The remaining variables
constitute the new X matriX, Xnpew.

8. Building of the final PLS leave-one-out cross-validated
models on Xey and prediction § with A factors.

9. Quantification of the predictive ability of the new model as
the cross-validated RMSEP,, according to eq 4.

10. If (a) RMSEP,,, > RMSEP one concludes that the
elimination of uninformative variables did not improve modeling
and the algorithm is terminated. Otherwise if (b) RMSEPpe, <
RMSEP, one will first wonder whether A was not too large
(overfitting), due to the uninformative variables which could have
influenced the selection (it is extremely improbable that A was
too small due to uninformative variables). In order to check this
possibility, the algorithm starting with a new selection on XR
(point 2) is repeated again for A= A — 1 and the original RMSEP
is replaced by the RMSEP,.,. When the reduction of Ato A — 1
does not improve modeling (RMSEP,,e, > RMSEP), the algorithm
terminates in 10 (a).

During the development of the algorithm the following variants
were tested. (a) UVE-M: a version robust to outliers. The ¢
criterion is replaced by its robust version, ¢; = (median(b;)/
interquartile range(by)). (b) UVE-o: a variant that eliminates a
strong dependence of the cutoff level on the largest c,ir. Instead
of the max(abs(carif)) value one finds the cutoff level among the
ranked abs(carir) as the value that corresponds to the 99% (95, 90
= o) quantile. With this modification one eliminates somewhat
less variables but perhaps also avoids eliminating some informative
variables. As a result, broader (spectral) bands are used for
modeling. (c) by-a: Instead of using c as a criterion to eliminate
variables by comparison with artificial noise variables one could
try to use the PLS b coefficients for autoscaled data (b,) in the
same way, i.e., compare by, values for experimental variables and
artificial noise variables. Depending on the quantile of by, 4rir USed,
we will call this method b,,-a-100 when max(abs(by, arir)) is applied
and b,-0-99, -95, or -90, respectively, when the cutoff level is shifted
as described above.

(3) Genetic Algorithm (GA). A genetic algorithm is applied
as a variable selection method in this study. The GA used here
was originally developed by Leardi® and modified by Jouan-
Rimbaud.®

(4) Preprocessing. Several preprocessing methods were
carried out, namely, centering, autoscaling, off-set correction,

(17) Leardi, R.; Boggia, R.; Terrile, M. J. Chemom. 1992, 6, 267—281.

(18) Leardi, R. J. Chemom. 1994, 8, 65—79.

(19) Jouan-Rimbaud, D.; Massart, D. L.; Leardi, R.; de Noord, O. E. Anal. Chem.
1995, 67, 4295—4301.

standard normal variate (SNV), and multiplicative scatter correc-
tion (MSC). The three last methods are concerned with a baseline
shift. Centering is the subtraction of the corresponding column
mean from each element of the data matrix and is nearly always
applied in PLS modeling. Autoscaling is centering combined with
normalization (dividing of each matrix element by its correspond-
ing column standard deviation). This preprocessing is applied in
the b,, method.1!

In off-set correction one subtracts, row by row for the whole
matrix considered, the row average of a few (1-5) first variables
(columns) from each element of the corresponding row of data
matrix X. SNV transformation? corrects each ith spectrum (row)
separately by subtraction of the row mean and normalizing in the
row direction. In MSC? each individual spectrum i (row) is
regressed against the mean spectrum in a window or windows of
wavelengths not affected by the characteristic or concentration
one is determining. The obtained parameters (slope and inter-
cept) are used to correct the spectrum.

EXPERIMENTAL SECTION

(1) Simulated Data. Noise-free data, SIM: generation of a
matrix of random numbers from 0 to 1 (S1) with dimensionality
(25, 100); PCA on the centered matrix S1, yielding scores and
loadings; definition of the complexity, A = 5; multiplication of the
first five score vectors (25, 5) by the first five loading vectors (5,
100) giving a simulated pure data matrix SIM (25, 100) that does
not contain any noise; PCA on SIM yields relative eigenvalues
(%) 23.02, 21.28, 19.50, 18.74, 17.46, 0, 0, .... The complexity of
SIM is therefore indeed exactly A = 5.

A noise-free variable y is defined asy = 5 x scores(1) + 4 x
scores(2) + 3 x scores(3) + 2 x scores(4) + 1 x scores(5), where
scores(1) is the vector of scores on PC1.

SIMUI incorporates the noise-free data matrix SIM and
additionally an uninformative variable matrix Ul: generation of a
matrix of random numbers from 0 to 1 (Ul) with dimensionally
(25,100); attachment of the matrix U1(25,100) to SIM(25,100)
results in SIMUI(25,200), SIMUI = [SIM,UI].

SIMUIN is the matrix sum of the SIMUI data and a noise
matrix (N): creation of a noise matrix N(25,200), with elements
from 0 to 0.005, i.e., small compared to the signal 0—1 in SIMUI-
(25,200); summation of SIMUI and N gives SIMUIN (= SIMUI
+ N).

(2) Experimental Near-IR Data Sets. CIS—TRANS: cali-
bration of trans double bond content in a fatty acid mixture;
transmittance FT-IR spectra (1600—900 cm™1) of eight standards
at concentrations 0, 2, 3, 4, 5, 7.5, and 10% trans. All measure-
ments were duplicated, one sample, at concentration 4, was
triplicated. The “window” used for the MSC correction was 1600—
1000 cm1,

This data set contains one outlier (the object at concentration
4). It is also known that the range of wavenumbers 1000—900
cm™! is chemically relevant since the cis—trans content was
determined in the past, from the wavenumber at 967 cm™! using
an internal standardization procedure. An internal standard was
the peak at wavenumber 1435 or at 1465 cm™L.

POLY-DAT: determination of hydroxyl number of polyether
polyols by (N)near-IR.

(20) Barnes, R. J.; Dhanoa, M. S.; Lister, S. J. Appl. Spectrosc. 1989, 43, 772—
777.
(21) Isaksson, T.; Naes, T. Appl. Spectrosc. 1988, 42, 1273—1284.
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Table 1. Data Sets SIM, SIMUI, and SIMUIN: Predictive Ability (RMSEP) of the Models Obtained from Different

Calibration Methods?

complexity 1 2
SIM
PLS 112 0.12
UVE-PLS 0.66 (39) 0.13 (91)
UVE-M 0.79 (29) 0.11 (86)
SIMUI
PLS 2.85 2.32
UVE-PLS 2.04 (11+0) 0.17 (62+0)
bw(100) 1.63 (64+36) 1.12 (66+34)
bw(50) 1.06 (42+8) 0.82 (42+8)
bw(30) 0.61 (30+0) 0.25 (30+0)
r(100) 1.63 (64+36) 1.31 (64+36)
r(50) 1.06 (42+8) 0.89 (42+8)
r(30) 0.61 (30+0) 0.32 (30+0)
SIMUIN
PLS(1—-100) 1.12 0.12
PLS 2.85 2.33
UVE-PLS 1.23 (32+0) 0.17 (48+0)
bw(100) 1.63 (64+36) 1.12 (66+34)
bw(50) 1.06 (42+8) 0.81 (42+8)
bw(30) 0.61 (30+0) 0.25 (30+0)
r(100) 1.63 (64+36) 1.31 (64+36)
r(50) 1.06 (42+8) 0.89 (42+8)
r(30) 0.61 (30+0) 0.32 (30+0)

0.0096
0.0112 (98)
0.0112 (98)

2.25
0.0170 (45-+0)

0.8260 (66+34)
0.4628 (44-+6)
0.0821 (30+0)
1.1370 (64+36)
0.5730 (42+8)
0.0821 (30+0)

0.0167
2.25
0.0220 (55+0)

0.8230 (66+34)
0.4654 (44-+6)
0.0880 (30--0)
1.1327 (64+36)
0.5720 (42+8)
0.0832 (30-+0)

0.0001
0.0001 (100)
0.0001 (100)

221
0.00022 (50+0)

0.7474 (66+34)
0.3618 (44-+6)
0.0084 (30+0)
1.0331 (64+36)
0.4430 (42-+8)
0.0084 (30-+-0)

0.0129b
221
0.0132 (63+0)

0.7473 (66-+34)
0.3650 (44-+6)
0.0156 (30-+0)
1.0292 (64-+36)
0.4419 (42+8)
0.0158 (30+0)

1.74 x 10-15b
1.74 x 10715 (100)
1.74 x 10715 (100)

2190
1.68 x 10~15 (68+0)

0.6627 (66+34)
0.1873 (45+5)

1.60 x 1015 (30+0)
0.9550 (64+36)
0.2662 (42+8)

1.60 x 1015 (30+0)

0.0129
2.19
0.0133 (43-+0)

0.6623 (66+34)
0.1933 (45-+5)
0.0129 (30-+-0)
0.9511 (64-+36)
0.2681 (42+8)
0.0122 (30+0)

a The number of retained informative (1—100) plus the number of retained uninformative (101—200) variables is shown in parentheses. ° The

optimal complexity of the model.

The data set consists of 74 near-IR spectra (X) of polyether
polyols and their hydroxyl numbers expressed in mg of KOH/g
(y). The data were recorded on a NIRSystem Inc. Silver Spring,
MD, instrument in the range of wavelengths from 1100 to 2158
nm. The duplicates or triplicates corresponding to one object were
averaged. The measurements were off-set corrected and bound-
ary wavelengths eliminated. The final dimension of X was 26 x
499,

SOLVENT: calibration of a solvent in a powder by near-IR
spectrometry.

Near-IR spectra of 57 samples were measured in the range of
wavelengths from 1000 to 2200 nm with a step 2 nm on a Bruker
IFS/28 N instrument. Informative wavelengths were expected
in the regions 1600—1800 and 2100—2200 nm (strong absorption),
1100—1200 nm (weak absorption).

COMPUTER PROGRAMS

Matlab for Windows, version 4.0 (The MathWorks, Inc.) was
used to program all necessary procedures and to generate the
normally distributed random matrices (R). The stepwise MLR
models have been selected with SPSS.?

RESULTS

The predictive ability of the model with minimized influence
(multiplication by the constant 1071%) of the artificial random
variables is found to be exactly the same as the predictive ability
of the model without those variables. When the multiplication is
not carried out, the predictive ability of the model is worse and
the elimination of the original variables can be misleading.

The performance of UVE-PLS is evaluated from the predictive
ability of the models after the elimination of the found uninforma-
tive variables. Leave-one(object)-out cross validated RMSEP was

(22) Norusis, M. J. SPSS for Windows, Base System User’s Guide Release 5.0, 1992.
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used to measure this performance and to compare UVE to the
other elimination methods, namely, to the b,, method (the number
of retained variables N is shown between the brackets), to the
elimination based on an absolute univariate correlation coefficient
r(N) in decreasing order and to full-spectrum methods.

(1) Simulated Data. In a first step we wanted to keep as
many data characteristics as possible under control, such as the
data complexity, the experimental noise, the position of the
random and nonrandom variables, possible outliers, and clusters
or nonlinearity. The simulated data sets SIM, SIMUI, and
SIMUIN (see Experimental Section) were prepared for this
purpose.

Table 1 compares the predictive ability (RMSEP) of the
different PLS variants obtained with successively 1, 2, ..., 5 PLS
components, for different selection criteria (c, by, and r). The
number of informative variables selected (range, 1-100) and the
number of random variables selected (range, 101—200) is shown
in parentheses. Because the selection based on r does not depend
on the complexity (A), the selection of variables is, for a defined
number of variables, constant for any A.

SIM. The ability of UVE-PLS to select as many informative
variables as possible is evaluated on data set SIM. This data set
does not include any uninformative variables.

For the true (simulated) complexity A = 5 the optimal solution
was reached; all 100 variables were selected. Also for a wrongly
chosen complexity A = 4 or 3 all 100 or 98% of all nonrandom
variables was considered correctly. This shows that the algorithm
truly retaines variables and does not eliminate any of them from
the data when they are meaningful.

SIMUI. Data set SIMUI is equal to SIM + 100 random
variables. Therefore the first 100 variables should not and the
second 100 variables should be eliminated. The quality of the
models obtained on the SIMUI data with different modeling



a EXPERIMENTAL FEATURES

ARTIFICIAL FEATURES

b
40 40
20 20

o 0 oowwwwwww

Il p

-60 -60
0 50 100 150 200 250
variable j

variable j

350 400 0 50 100 150 200
variable j

Figure 2. Comparison of the ¢ (plots a and b) and the by, criterion (plot c) on simulated data (SIMUI). The variables 1—100 are informative
ones, and the variables 101—-200 are uninformative ones. Plot b shows the cutoff level estimation on artificial random variables.

methods can be compared to the solution for the noise free SIM
data (see the results for SIM in Table 1). The purpose of this
exercise is to evaluate the ability of the method to distinguish
the uninformative variables (101—200) from the informative ones
(1-100).

The influence of the uninformative variables on PLS without
variable elimination is, for any complexity, negative. For instance,
for five PLS components, one finds RMSEP = 2.19 compared to
RMSEP = 1.74 x 10~ for the subset of all informative variables
1-100. This illustrates the need for eliminating uninformative
variables to obtain optimal prediction.

UVE-PLS with five components gives a better solution than
the other methods. All random variables and some of the
informative ones are ignored. The obtained RMSEP is equal to
1.68 x 1071, i.e., similar to that reached for all informative
variables 1—100. The values 1.68 x 1071 and 1.74 x 107 are
probably within the roundoff error of the computer and the
difference between them is therefore not significant.

The by, or r results are, in some cases (b,(30), r(30))
comparable, but among the first 100 retained variables (the true
number of the informative variables) only 66 are informative. The
rest are random variables. As a result, the RMSEP on the Xnew
with 100 retained variables (in Table 1 r(100) and b,,(100)) is much
higher (0.9550 and 0.6627) than the RMSEP on the subset of all
informative variables 1—100. Only when the user-defined number
of retained variables is small enough (30 in this case), all random
variables are ignored and a good model is found (RMSEP = 1.60
x 107%). To reach such a solution one has, however, to ignore
70% of the informative variables. The graphical comparison in
Figure 2 shows that the criterion c is more selective than b, or r.

When one ranks the abs(c) values, the 68 largest ones are due
to the informative variables 1—100, the 69th value is the first due
to an uninformative variable. When the same is applied to abs(by,)
or r, only the 30 largest values correspond with informative
variables and the 31st is due to a random variable.

An estimation of the optimal number of variables to retain can
be found by using the strategy with artificial variables. The by~
0100 indeed leads to the elimination of all uninformative variables
(101-200) and RMSEP equal to 1.7 x 10715 with 29 relevant
variables. The number of retained variables found with b,-a-100
(29) agrees with the optimal number estimated above (30), but
there may be a problem. When one applies the b,-a method, the
evaluation of the useful and the uninformative variables can
deteriorate since the random matrix R added to the original X is
autoscaled, therefore having an influence on the selection: the
variance of the artificial random variables (R) is no longer small
compared to that of the real variables.

SIMUIN. This data set was prepared to investigate the
influence of noise, added to the experimental informative variables,
on the selection. To evaluate results, one should compare the
predictive ability of the models after the variable elimination to
the RMSEP that is obtained on the subset of all true informative
variables 1—100 with the added noise (in Table 1 indicated as
PLS(1—-100)).

Due to the noise the optimal cross-validated complexity for
SIMUIN is found to be equal to 4. UVE-PLS eliminates success-
fully all 100 uninformative variables from the data set together
with some of the informative ones. The predictive ability of the
final model is comparable to the ideal RMSEP, increases from
0.0129 only to 0.0132, i.e., less than 3%. The b,(30) or r(30)
selection leads to a slightly worse prediction as a result of the
elimination of too many (70) informative variables. When,
however, one takes into account more b,, or r selected variables,
some of them are random ones, so that neither the b,(50,100)
nor the r(50,100) models do lead to a better modeling.

As discussed earlier ¢ is more selective than b,. To illustrate
this fact, further suppose the following simple example. The
variable y = [0 20 40 60 80 100]".

The first 10 variables in X are created to be collinear with y
with proportionality coefficients: —0.002 —0.004 —0.001 0.001
0.0015 0.003 0.008 0.005 0.003 0.001.

The last column in X is a vector: [0.009 0.001 0.007 0.008 0.006
0.004]" that simulates an uninformative random variable.

By applying PCA on X as well as on autoscaled X one
concentrates the meaningful part of the total variance (due to the
variables 1—10) into the first latent variable. PC2, on the other
hand, explains only the error in data, i.e., the variable number
11. The inspection of relative eigenvalues, however, shows that
in the latter case (autoscaled data) there is a strongly increased
importance of PC2 (from 0.005 to 8.8%). This indicates that by
autoscaling the signal (PC1) to noise (PC2) ratio is lowered from
the original 99.995/0.005 to 91.2/8.8 and the b, selection can
therefore easily be influenced by a noise.

It is also noteworthy, that the ratio of the c criteria for the
informative (1—10) and the artificial random (12—22) variables
Cinformative/Cartit IS MUCh larger than the by informative/bw artif ratio.  Using
¢ therefore yields better ability to discriminate the useful and the
uninformative variables than using b,,. It must be concluded that
max(abs(by artif)) could be so large that some of the informative
experimental variables could be removed.

(2) Experimental Data Sets. CIS—TRANS. This data set
is an example of a situation where it is known that most of the
information is concentrated in a relatively small spectral range
and that large areas of the spectrum are uninformative. The
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Table 2. Data set CIS—TRANS (700 Variables) RMSEP Obtained for Different Calibration Methods and Different

Preprocessing?

preprocessing

raw off-set SNV MSC
CIS—TRANS
A967 1.92 1.75 0.95 1.03
967/1435 4.09 1.17 0.71 2.38
967/1465 3.97 1.03 1.25 181
MLR (successively wavenumbers cm~1) 1.90 (966) 1.70 (965) 0.95 (967) 1.03 (967)
0.85 (975) 0.80 (912) 0.52(985) 0.48 (951)
0.54 (951) 0.42 (973) 0.40 (985)
PLS (compl) 1.25 (3) 1.10 (4) 1.25 (3) 1.26 (3)
UVE-PLS (compl - retained var) 0.96 (3—43) 0.98 (3—16) 0.73 (3—19) 0.67 (3—23)
CIS—TRANS-4
A967 221 2.23 0.47 0.60
967/1435 4.74 0.43 0.40 1.50
967/1465 4.64 0.53 0.97 1.94
MLR (successively wavenumbers cm~1) 2.18 (966) 2.11 (965) 0.44 (968) 0.57 (968)
0.87 (911) 0.63 (911) 0.21 (951) 0.21 (951)
0.84 (1011) 0.46 (951) 0.15 (985) 0.15 (985)
0.63 (945)
PLS (complexity) 0.83 (4) 0.83 (3) 0.69 (2) 0.68 (2)
UVE-PLS (compl - retained var) 1.18 (3—28) 1.25 (3—26) 0.22 (2—20) 0.25 (2—27)
(wavenumber cm™1) 978—963
959—956
bw (compl - retained var) (wavenumber 1.05 (3—30) 1.20 (3—20) 0.27 (2—25) 0.25 (2—35)
cm™) 1405—1403
979—958

@ For MLR the selected variables are shown in parentheses. For PLS, UVE and by, are indicated: the model complexity, the number of retained

variables, and, for the best models, the list of retained wavenumbers.

a EXPERIMENTAL FEATURES b ARTIFICIAL FEATURES c
40 40
30 30 0.04
0.02
20 20
© o E 0
10 10
-0.02
0 0
-0.04
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0 10 -0.06
1600 1400 1200 1000 0 200 400 600 1600 1400 1200 1000
wavenumber (cm-1) variable j wavenumber (cm-1)

Figure 3. Elimination of uninformative experimental variables in CIS—TRANS data set (plots a and b) on the ¢ plot and by, plot (the outlier was

eliminated from data).

original method applied was univariate (wavenumber 967 cm™1)
or bivariate (a ratio of two wavenumbers: 11/12). As is shown
in Table 2, these methods are considerably improved by correcting
the data with SNV.

When PLS is applied to raw, SNV, or MSC pretreated data, it
yields results that are of similar quality. The best result is,
however, one of the bivariate procedures after SNV correction
(although it is difficult to state whether the difference is significant
or not).

By elimination of uninformative variables with UVE-PLS, one
obtains models that are always better than the corresponding full-
spectrum PLS models and require only 16 to 43 variables. The
region selected is that around 967 cm~?, which is indeed known
to be informative, thereby showing that the retained wavenumbers
correspond with what one would reasonably expect. We also
applied MLR, and interestingly, it should be noted that these
models are clearly better.

One object (at the concentration 4) is an outlier; therefore, its
elimination improves prediction. The results (Table 2) confirm
to a large extent the conclusions obtained with all points. One
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also concludes that the optimal model complexity has been, by
the outlier elimination, reduced from three to two.

Surprisingly, it should be also noted, that the b, analysis
introduces to the subset of the retained variables some of the
wavenumbers around 1405 cm~! [compare the by, plot (Figure 3c)
with the ¢ plot (Figure 3a)].

It is not clear how to interpret these additional variables,
because they do not bring any difference to the model predictive
ability compared to UVE.

One interesting feature of the elimination method is the
following. The results show that MSC (in the same way as SNV)
improves the results. In MSC one usually selects a zone in the
spectrum that is not affected by the characteristic being measured
to be able to do the correction. Choosing this zone is not always
evident. The present method allows one to find zones that contain
variables uninformative for the determination of y and such zones
are useful for the MSC procedure.

POLY-DAT. The investigation of this data set was described
earlier.}'® The predictive abilities of PLS, MLR, and GA models
applied to the full spectrum are shown in Table 3a. In Table 3b



Table 3. Data Set POLY-DAT (499 Variables): RMSEP Obtained for Different Calibration Methods?2

(a) Modeling Applied to the Original (Full) Data
method PLS MLR GA
complexity 6
variables 499 6 6
RMSEP 1.86 1.56 1.09
(A nm) 1430 2062
1878 1776
1974 1760
2064 1838
1210 1566
(b) Elimination of Uninformative Variables and Final Variable Selection
method bw(250) by-0-100 by-a-99 by-a-95
complexity 6 6 6 6
variables 250 117 162 195
RMSEP 1.70 2.65 1.72 1.73
(A nm) 1406—1584
1832—-1840
1996—2128
method UVE-PLS UVE-0-99 UVE-0-95 UVE-0-90 MLR GA
complexity 5 5 5 5
variables 80 130 247 301 4 4
RMSEP 1.61 1.55 1.54 161 1.16 1.15
(A nm) 1198—1208 2064 2064
1228—1232 1208 1810
1408—1426 1810 1208
1448—1460 1456 1458
1720
1792—-1832
1840—1880
2056—2076
aThe optimal complexity and the selected variables or spectral regions (1, nm) are shown also.
a ORIGINAL SPECTRUM b C  EXPERIMENTAL FEATURES d ARTIFICIAL FEATURES
15 0.2 40 40
§ q 0.1 20 max(c artif)
£ 5
) 4}
205 0
04 L A A
-20 95 %quantile
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Figure 4. (a) Original spectrum of one object from data set POLY-DAT and (b) the b, and the c plots for (c) the experimental and (d) the

artificial random variables.

are the optimal results obtained with the b, method, UVE-PLS,
its modifications as well as the final MLR and GA models on the
UVE-PLS preselected variables.

The RMSEP obtained with six PLS components on the original
499 variables is reduced from 1.86 to 1.61 (1.54) by UVE-PLS (a-
95) with five PLS components and 80 (247) variables and to 1.70
by the selection on by, (250 variables, 6 PLS components). Figure
4 shows (a) the original spectrum of one object and (b) the
corresponding by, plot as well as the c plot for (c) the experimental
and (d) the artificial variables.

The b,-a-100 method leads, probably due to the autoscaling
of the extended data matrix XR, to a deteriorated distinction
between the useful and the uninformative variables. Conse-
quently, only two spectral bands (b, maximum at 1440 nm and
2070 nm, 117 variables, Figure 4b) are retained and the predictive
ability of the model is decreased (RMSEP increases to 2.65). When
the cutoff level estimated on by it is lowered to 99% a model of

similar quality as the optimal b,(250) model is reached.

The complexity of the PLS models after the elimination of
uninformative variables with UVE is lower which seems to indicate
overfitting in the original full-spectrum solution. This is indirectly
verified also by UVE-a modification. If the cutoff level is lowered
and more and more experimental variables considered, the
RMSEP at first decreases slightly and then again increases due
to the presence of too many variables.

When the genetic algorithm is applied to the full spectrum to
select variables for a multiple linear regression model, a solution
is found that is similar in dimensionality to the PLS solution but
with a lower RMSEP (1.09).

Interestingly the GA applied on the 80 variables remaining after
variable elimination on the PLS solution, requires only four
variables. Because cross-validation for GAs is difficult, there is
some concern that GA variable selection could lead to selection
based on chance correlations. Preselection of the variables
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Figure 5. Visualization of the fact that the data set SOLVENT does
not contain significanly more information (plot a) than the artificial
random variables (plot b).

diminishes this possibility. It is noteworthy that the obtained
solution requires only four variables. This lends support to the
conviction that full-spectrum PLS can lead to overfitting. It also
should be mentioned here that convergence of the GA on the
preselected variables was reached after a much smaller number
of generations.

Still more interestingly, classical stepwise multiple linear
regression (MLR) on these 80 variables also requires 4 variables
and the model (with an RMSEP of 1.16) obtained is nearly identical
with that obtained by GA since the same variables are selected:
only one of them is slightly shifted by about 2 nm. When MLR
is applied to the full spectrum it requires six variables and leads
to a worse RMSEP than with four. One might conclude from this
observation, that there is no real need for the final PLS solution
nor in fact for the genetic algorithm. The PLS approach is,
however, required in the initial stage to be able to select the
interesting parts of the spectrum. Of course, it is not possible to
decide that this is always true, but the outcome is intriguing
enough to investigate further whether this is generally the case.

SOLVENT. We have tried many preprocessing methods, the
elimination of possible outliers, nonlinear modeling, variable
selection, etc., to obtain a useful calibration model. The obtained
RMSEP was, however, never better than 15% relative. Figure 5
shows that these efforts were doomed to be vain.

Indeed, the ¢ plot for UVE-PLS shows that there is no more
information in the experimental than in the artificial random
variables, so that a good calibration model could not have been
expected. By applying this methodology from the start, one could
have concluded this immediately and avoided the costly efforts
trying to make a model when this is not possible.

CONCLUSION

The application of UVE-PLS allows one to eliminate uninforma-
tive variables in multivariate data sets before a final modeling is
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carried out. The method has two advantages compared to the
other selection methods: (1) the used criterion is rather selective;
(2) the level to cut the uninformative experimental variables is
user-independent.

The simulations show that UVE-PLS is a way to eliminate those
variables that clearly have no interest. Compared to other
methods, it keeps a larger number of the relevant variables for
the final modeling. The experimental data sets lead to the
conclusion that the method significantly improves prediction
(compared to PLS) in the cases when the data set contains many
uninformative variables (for example CIS—TRANS data). In an
extreme instance it indicates that there is no more information in
the real than in the random variables (SOLVENT). In some cases
one eliminates much less experimental variables (POLY-DAT),
which shows that many variables carry information. In such a
case the improvement of RMSEP is not so evident. Nevertheless,
the modeling is simplified and the final dimensionality can be
lower than the original.

Of the two criteria tested, the c criterion appears to be
fundamentally better, but it is more difficult to apply. The b,
criterion can be applied when this is considered to be a problem.

The elimination of the random variables (UVE) can be
considered as a general preselection procedure. It avoids prob-
lems in the subsequent application of MLR (with or without GA).
The results seem to indicate that after UVE the complexity of the
GA or MLR model can be smaller than the original one. This
means that some overfitting might occur in the models using all
data.

The method was applied to PLS, but it can be considered to
be equally useful for PCR or other related methods.
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