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Wavelength selection is a critical step for producing better prediction performance when app lied to spec- 
tral data. Considering the fact that the vibrational and rotation al spectra have continuo us features of 
spectral bands, we propose a novel method of wavelength interval selection based on random frog, called 
interval random frog (iRF). To obtain all the possible continuous intervals, spectra are first divided into 
intervals by moving window of a fix width over the whole spectra. These overlapping intervals are ranked 
applying random frog couple d with PLS and the optimal ones are chosen. This method has been applied to 
two near-infrared spectral datasets displaying higher efficiency in wavelength interval selection than 
others. The source code of iRF can be freely downloaded for academy research at the website: http://
code.google.com/p/multivariate-calibration/d ownloads/list .

� 2013 Elsevier B.V. All rights reserved.
Introductio n

In recent years, multivariate calibration has been widely ap- 
plied in vibrational and rotational spectral data such as infrared 
(IR), near infrared (NIR) and Raman spectroscopy [1,2]. The goal 
of multivariate calibration is to construct a predictive model,
mostly linear calibration model, relating chemical measured vari- 
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.

ables like wavelengths to properties of interest like concentr ation 
values. With the advances in modern spectroscopic instrument,
the expanded amounts of measured data are usually of high collin- 
earity. To address this common problem, a variety of linear regres- 
sion methods based on latent variables (LVs) have been developed,
such as partial least squares (PLSs) [3] and principal component 
regressio n (PCR) [4]. Typically, these methods are usually used to 
carry out full-spec trum calibration due to a theoretical demonstra- 
tion that the addition of spectral channels always improves the 
predictio n performance under certain assumptions [5]. However,
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many papers have either theoretical ly or experime ntally proved 
that it is very important and essential to conduct wavelength selec- 
tion to gain better prediction performance [6–10]. The aim of 
wavelength selection is to select the informative wavelengths 
which are responsib le for the property of interest. In other words,
the removal of the uninformative and/or interfering variables 
contributes to construct a reliable and interpretabl e calibration 
model with good prediction accuracy. In addition, Zou et al. [11]
summarized the importance of wavelength selection by means of 
chemical, physical and statistical basis.

So far, many methods of variable selection have been applied in 
multivariate calibration. These methods can be categorized into 
two classes: single wavelength selection and waveleng th interval 
selection. During the past decades, a series of single wavelength 
selection methods have been proposed, such as uninformative var- 
iable elimination (UVE) [12,13], Monte Carlo based UVE (MC-UVE)
[14], competit ive adaptive reweighted sampling (CARS) [15,16], La- 
tent projective graph (LPG) [17], influential variable (IV) [18], suc- 
cessive projection algorithm (SPA) [19], stepwise selection [20],
genetic algorithm (GA) [21–26], simulated annealing (SA) [21],
and PLS regression combined with sure independen ce screening 
(PLSSIS) [27]. The importance of individua l wavelengths is calcu- 
lated on the basis of the statistical features of the variables and 
regression model through some kind of criteria such as correlation 
coefficient, variable influence on projection, Akaike information cri- 
terion (AIC), and the mean squared error in prediction (MSEP).
However, single wavelength selection methods are neither intuitive 
nor easy to interpret the selected variables correspondi ng to chem- 
ical property because they are selected independently. Also individ- 
ual wavelengths are not robust to noise. Therefore, consideri ng the 
fact that the vibrational and rotational spectra have continuo us fea- 
tures of spectral bands, it is reasonable and interpretable to select 
spectral bands instead of scatter spectral points. For instance, the 
vibrational and rotational spectral band relating to chemical band 
generally has a width of 4–200 cm �1. Many methods of wavelength 
interval selection have been developed following the idea of spec- 
tral band selection such as interval PLS (iPLS) [28], moving window 
PLS (MWPLS) [29], and as well as improvements made on them 
based on optimization algorithm [30–36]. The principle of iPLS con- 
sists of splitting the spectra into equal-width intervals, and devel- 
oping sub-PLS models for each one. The sub-interva ls with the 
lowest value of the root mean squared error of cross-val idation 
(RMSECV) are chosen as the best. However , they are not the optimal 
ones. Many methods based on iPLS were develope d to optimize the 
combination of the selected intervals, such as backward iPLS (biPLS)
[33], and synergy iPLS (siPLS). The main advantage of this kind of 
method is that it uses a graphical display to focus on a choice of bet- 
ter sub-intervals and conduct comparison among the prediction 
performanc e of local models and the full-spectrum model. Instead 
of just testing a series of adjacent but nonoverlapp ing intervals,
which would miss some more informative ones, MWPLS was pro- 
posed to overcome this drawback. It builds a series in a window 
that moves through the whole spectra and then chooses the infor- 
mative intervals with low model complexi ty and low value of the 
sum of residuals. Because it considers all the possible continuous 
intervals, it can select all the possible informative intervals but 
not the optimized ones. Changeable size moving window partial 
least squares (CSMWPLSs) and searching combination moving win- 
dow partial least squares (SCMWPLSs) [31] based on MWPLS were 
proposed to search for an optimized spectral interval and an opti- 
mized combination of spectral interval from informative intervals 
using a local optimized algorithm. Although the results have 
achieved some improvement, it is limited due to the use of local 
optimized algorithm not global optimized algorithm. In addition,
when a high spectral resolution is used, e.g., 1 or 2 cm �1, the many 
spectral points will make the calculation take a very long time. In 
addition, Balabin et al. [37] made a comprehens ive comparison be- 
tween different wavelength selection methods on biodiesel data,
including the above two categories.

Consideri ng the continuity of spectra and all the possible con- 
tinuous spectral intervals, in this study, we propose a novel and 
efficient wavelength interval selection based on random frog 
[38], called interval random frog (iRF). Random frog is a reversible 
jump Markov Chain Monte Carlo (RJMCMC)-like algorithm that 
was originally proposed to apply into gene selection . It conducts 
a search in the model space through both fixed-dimensional and 
trans-dimen sional moves between different models, and then a
pseudo-MC MC chain is computed and used to calculate selection 
probabili ty of each variable. Afterwar ds, variables can be selected 
in terms of the ranking of all variables.

Unlike the iPLS and iPLS-based methods , iRF considers all the 
possible continuous spectral intervals to find the possible informa- 
tive ones, that is, spectra are first divided into sub-interva ls by 
moving window of a fixed width over the whole spectra. These 
overlappi ng intervals are ranked applying random frog coupled 
with PLS, and the optimal ones are chosen. This approach is 
referred to a novel idea compare d with other wavelength interval 
selection methods . The performanc e of iRF was tested on two near 
infrared spectra datasets. The results show that iRF is a more effi-
cient wavelength interval selection method than other ones such 
as iPLS, biPLS, siPLS and MWPLS.
Theory and algorithms 

Random frog coupled with PLS 

Random frog is a mathemati cally simple and computationall y
efficient method that borrows the framework of reversible jump 
MCMC [39,40]. Random frog coupled with PLS means that PLS is 
used as a modeling method in random frog. Let X, of size n � p, de- 
notes the spectral matrix consisting of n samples in rows and p
variables (wavelengths or wavenumber s) in columns and Y, of size 
n � 1, denotes the property of interest like concentratio n values.

Before running the random frog method, five tuning parameters 
that are set to control its performance should be initialized.

(1) N : the number of iterations. It needs to be sufficiently large 
to achieve convergence depending on the number of 
variables.

(2) Q : the number of variables between 1 and p contained in the 
initialized variable set. Q had an impact on the iterative pro- 
cess only at the first time but had no significant effects on 
the overall performanc e of random frog.

(3) H : a factor controlling the variance of a normal distribut ion 
from which the number of variables is sampled to enter a
candidate variable subset 

(4) x : the role of this paramete r is explained in Step 3 of the 
following section.

(5) g : a paramete r, which is the upper bound of the probabili ty 
for accepting a candidate variable subset V� whose perfor- 
mance is not better than V0, ranges from 0 to 1.

After initializatio n of parameters, random frog works in five
steps:

Step 1: A variable subset V0 consisting of Q variables is initial- 
ized randomly.
Step 2: A random number Q� is generated, which is the number 
of candidat e variable subset V�, from a normal distribution 
Norm (Q,hQ), where Q and hQ are the mean and standard devi- 
ation of this distribution , respectively .
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Step 3: A candidat e variable subset V� is proposed based on Q�

variables. There are three possible situations: (1) If Q� = Q, let 
V� = V0, (2) if Q� < Q, a PLS model is first established using V0,
and the regression coefficient of each variable in this PLS model 
is recorded and compared with each other. The Q � Q� variables
related with the smallest absolute regressio n coefficients are 
deleted from V0. The rest Q� variables constitute a candidate 
subset V�, (3) If Q� > Q, a variable subset S with x(Q� � Q) vari- 
ables randomly sampled from V � V0 is produced. A PLS model 
is built using the combinati on of V0 and S. Afterwards, the Q�

variables which have the largest absolute regression coeffi-
cients in this PLS model are retained and collected as a
candidate subset V�.
Step 4: The acceptance of V� is determined by computin g the 
root mean squared error of cross-validation (RMSECV) using 
V0 and V�, respectively, obtaining RMSECV and RMSECV �. If 
RMSECV� 6 RMSECV, accept V� as V1. Otherwise accept V� as
V1 with probability gRMSECV/RM SECV �. It is clear that 
RMSECV/RM SECV � < 1, so gRMSECV/RM SECV � < g. Finally, V0 is
updated using the variables in V1 to return to Step 2. This iter- 
ation is repeated until N loops have finished.
Step 5: A selection probability of each variable after N iterations
is computed. The frequency of the jth variable, j = 1,2, . . . ,p, that 
has been selected in these N variable subsets is denoted as Nj.
The selection probability of each variable can be calculated 
using Eq. (1). All the variables are ranked in terms of selection 
probability.

Probabilityj ¼
Nj

N
; j ¼ 1;2; . . . ;p ð1Þ

Normal distribution is employed to control the number of vari- 
ables implicitly and for the addition and deletion of variables,
which provides the basis of model searching in a general model 
space. The criteria of absolute regression coefficient in the model 
used as a measure of variable importance guarantees that the more 
important a variable, the more likely it is to be selected.

Random frog is also viewed as an extension on model popula- 
tion analysis (MPA) [41–44] because it is based on analyzing a
large amount of sub-models that are sampled from the model 
space.

Interval random frog (iRF)

The method of iRF proposed in this study is a wavelength inter- 
val selection method based on the framework of random frog PLS.
Spectra are first divided into sub-intervals through moving win- 
dow of a fixed width, denoted as w, over the whole spectra, which 
can obtain all the possible intervals. These overlapping intervals 
are regarded as ‘variables’ when applying random frog PLS. The 
union of members of different sub-interva ls is used, when estab- 
lishing a PLS model. Each candidate interval has w spectral points.
Assess the intervals by the sum of the absolute regression coeffi-
cient of each spectral point. Except this, other approaches are the 
same as five steps in random frog. Finally, all intervals are ranked.
In order to better understand this method, a graphic flowchart and 
simple example of iRF are briefly shown in Fig. 1.
Dataset and software 

Tobacco dataset 

The tobacco dataset [16] was obtained with the measure ment of 
300 samples by Nicolet Antaris FT-NIR spectromete r in transflective
mode. Each spectrum consists of an average of 32 scans at intervals 
of 4 cm �1 within the wavenumber s range 10,000–4000 cm �1 (1557
spectral points). The total nicotine of the tobacco samples deter- 
mined by continuous flow method was considered as the property 
of interest.

Milk dataset 

The milk dataset consists of 67 milk samples, acquired directly 
from the local market in Changsha, China. The samples were mea- 
sured using an Antaris II FT-NIR spectromete r (Thermo Fisher, USA)
in transflective mode. Each spectrum consisted in an average of 32 
scans at intervals of 4 cm �1 within the wavenum bers range 
10,000–4000 cm �1 (1557 spectral points). The protein of milk 
was considered as the property of interest. Protein content was 
determined by Kjeldahl method as described by GB/T 5413.1- 
1997 (National Standards of PR China) and the factor 6.38 was used 
to convert the nitrogen values to protein. Rose-Gottlieb and Kjel- 
dahl are the reference method for measuring the content of the 
property of interest. Of note, five outliers were detected and re- 
moved based on the Monte-Carlo outlier detection approach [45].
The dataset is available for readers on website: http://co de.google.- 
com/p/m ultivariate-cali bration/download s/list .

Software

A general-purp ose computer with Inter Core i5 3.2 GHz CPU and 
3 GB of RAM and Microsof t Windows XP operating system was 
used. All the calculatio ns were performed by in MATLAB 2010b.
Results and discussion 

The proposed iRF wavelength interval method was compare d
with others, including MWPLS, iPLS, biPLS and siPLS. Of note, siPLS 
is a greedy algorithm that investigates all the combination of pre- 
defined intervals to get the best intervals. In this study, three inter- 
vals were considered for siPLS. The datasets were first normalized 
to have zero mean. To better compare the prediction performances 
of these methods, an independent test set was used for our study.
Furthermore, in order to ensure a uniform distribution of subsets,
the dataset was divided into calibration set (80% of the dataset)
and independen t test set (20% of the dataset) on the basis of Ken- 
nard–Stone (KS) method [46]. The calibration set was used for 
waveleng th selection and establishing the PLS model, while the 
independen t test set was used for validation of the calibration 
model. For all of the calculatio ns on these two datasets, the maxi- 
mum number of latent variables was limited to 12. In model cali- 
bration, the optimal number of latent variables which was used for 
validation was determined by 10-fold cross-validati on method 
with the lowest RMSECV. In addition, the performanc e of the mod- 
el was assessed by the root mean square error of calibration 
(RMSEC) and the root mean square error of predictio n (RMSEP)

Initializati on of parameters in iRF 

The method of iRF has six paramete rs to be initialized, including 
interval width w, N, Q, h, x and g. Because chemical bands gener- 
ally have a width of 4–200 cm �1 in spectra and the intervals di- 
vided by iRF overlap greatly, an interval width w of 5–20 spectral 
points is should be set. As previously discussed, the larger the N
is, the more likely iRF method is to select the best intervals but 
the higher the computati onal cost is. For these two datasets,
accordin g to our experience, N equal to 10,000 is sufficient. In re- 
gard to Q, it has an influence on the iterative process only at the 
first time but has no significant effects on the overall performance.
Q was set to 50 so that the initialized set would contain more inter- 
vals. The other three paramete rs h, x and g, which do not have 
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Fig. 1. (A) a simple flowchart of iRF method; and (B) a simple example of iRF method.
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significant effects on the results, were set to 0.3, 3 and 0.1,
respectively .
Tobacco dataset 

For this dataset, the w of iRF was set 20, and 1538 intervals that 
contained all possible intervals with 20 spectral points were 
obtained. In addition, the window size of MWPLS was set to 20,
and the number of divisions was set to 40 for iPLS. What deserves 
special mention is that the intervals obtained by iRF and MWPLS 
were overlappi ng but the intervals divided by iPLS were nonover- 
lapping. Therefore, the conditions for iRF and MWPLS were similar 
to the ones for iPLS.

Regarding iRF, the selection probability of intervals cannot be 
reproduced due to the random sampling. To diminish the impact 
of this random factor, iRF was conducted 20 times and the average 
was used. Moreover, it is necessary to seek an optimal number of 
intervals from the ranked intervals. The top 20 ranked intervals 
are listed in Table 1. But the RMSECV of the union of the top 20 
ranked intervals is not minimal. The RMSECV of the union of 
10th to the last one (1538th) of the ranked intervals was computed 
Table 1
The top 20 intervals (position in the dataset) for the tobacco dataset.

Rank Intervals Rank Intervals Rank Intervals Rank Intervals 

1 8–27 6 6–25 11 5–24 16 19–38
2 7–26 7 10–29 12 18–37 17 4–23
3 11–30 8 12–31 13 21–40 18 3–22
4 13–32 9 15–34 14 17–36 19 16–35
5 9–28 10 14–33 15 20–39 20 22–41

The union of the top 20 intervals is 3–41, that is 4007–4154 cm �1.
(Fig. 2), so as to find the optimal number of intervals. And then the 
union of the optimal intervals was used for predicting the test set.
We can see from Fig. 2 that the top 51 intervals are the optimal 
intervals with the lowest RMSECV on the calibration set.

The results of different methods are shown in Table 2. From 
Table 2, we can see that all the wavelength interval selection meth- 
ods are superior to the full-spectru m PLS. Besides, iRF is signifi-
cantly better than other wavelength interval selection methods 
with not only a lower RMSEC and RMSEP but also a smaller 
number of variables. All of the methods chose 12 as the optimal 
component of PLS based on 10-fold cross-validation. Four intervals 
were selected by iRF, which are located at 4000–4208 cm �1,
Fig. 2. The RMSECV of the union of the top ranked intervals from 10th to the last 
(1538th) on the tobacco dataset. The top 51 intervals are the optimal intervals with 
the lowest RMSECV on the calibration set.



Table 2
Results of different wavelength interva l selection methods on the tobacco dataset.

Methods Selected wavelength intervals 
(cm�1)

nVAR nLVs RMSEC RMSEP 

PLS 10,000–4000 1557 12 0.0595 0.0527 
MWPLS 4000–4219, 4239–4655,

5612–5805, 5851–6067
275 12 0.0440 0.0473 

iPLS 4000–4748, 5654–6102 312 12 0.0450 0.0485 
biPLS 4000–4297, 4451–4597,

7455–7756
195 12 0.0409 0.0429 

siPLS 4000–4297, 4451–4597 117 12 0.0400 0.0449 
iRF 4000–4208, 4389–4474,

4586–4690, 5685–5770
129 12 0.0399 0.0419 

Table 3
Results of different wavelength interval selection methods on the milk dataset.

Methods Selected wavelength intervals 
(cm�1)

nVAR nLVs RMSEC RMSEP 

PLS 10,000–4000 1557 12 0.0604 0.0642 
MWPLS 4061–4370, 4451–4601,

4686–4864, 5488–5778
244 9 0.0546 0.0598 

iPLS 4150–4898, 5504–5951 312 10 0.0664 0.0525 
biPLS 4150–4748, 5203–5350,

7459–7756, 8512–8659,
8964–9110, 9264–9708

390 11 0.0438 0.0579 

siPLS 4451–4597, 4752–4898,
6106–6252

117 6 0.0662 0.0551 

iRF 4007–4239, 4258–4408,
4516–4682, 4725–4810,
5026–5315, 6025–6106,
8682–8763, 9260–9330,
9569–9673, 9928–10,000

357 10 0.0426 0.0555 
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4389–4474 cm �1, 4586–4690 cm �1, and 5685–5770 cm �1. The 
selected intervals are shown in Fig. 3. The range of 4000–
4208 cm �1 and 4389–4474 cm �1 are related to the combination 
of the fundamenta l stretchin g and bending vibration s of CAH/
CAC, [47]. The interval of 4586–4690 cm �1 is ascribed to the sec- 
ond overtone of NAH bending, while the range of 5685–
5770 cm �1 belong to the first overtone of CAH stretching of 
methyl. It should be pointed out that the intervals selected by 
MWPLS and iPLS contain most of the same ones selected by iRF,
which indicates that the intervals selected by MWPLS and iPLS still 
have some redundant and uninformative variables. As for biPLS 
and siPLS, their results are not better than iRF due to the omission 
of the informative intervals approximat ely located at 5685–
5770 cm �1. Although biPLS and siPLS (consider all the possible 
combination of three intervals) are the improved version of iPLS 
to select the best combination of several intervals, they are still 
limited. Of course, the more intervals the spectra split, the better 
results can be obtained, but the longer the computational time is.
For example, if siPLS considers the combination of five intervals 
with 40 divisions, it will lead to calculate 40 �39�38�37�36/
5! = 658, 008 times.
Milk dataset 

Because the milk dataset has the same spectral points as the to- 
bacco dataset, the procedure was conducted similarly. The w of iRF 
as well as the window size of MWPLS was set to 20, while the num- 
ber of divisions was set to 40 for iPLS.
Fig. 3. The selected intervals on the tobacco dataset by iRF.
Table 3 shows the comparison of different methods. Fig. 4
shows the RMSECV of the union of the top ranked intervals from 
10th to the last (1538th). The top 165 intervals are the optimal 
intervals with the lowest RMSECV on the calibration set. From 
Table 3, one can see that all the wavelength interval selection 
methods are superior to the full-spec trum PLS on the basis of 
RMSEP. However, the RMSEC of iPLS and siPLS are even larger than 
the full-spectrum-PLS . As for the other three methods, both RMSEC 
and RMSEP of iRF are lower than MWPLS and biPLS, which indi- 
cates that iRF is indeed a more efficient wavelength interval meth- 
od and the intervals selected by iRF are more informative. Ten 
intervals selected by iRF are 4007–4239 cm �1, 4258–4408 cm �1,
4516–4682 cm �1, 4725–4810 cm �1, 5026–5315 cm �1, 6025–
6106 cm �1, 8682–8763 cm �1, 9260–9330 cm �1, 9569–9673 cm �1

and 9928–10,000 cm �1, which are shown in Fig. 5. Furthermore,
most of the selected intervals are associate d with the chemical 
property . Intervals 4007–4239 cm �1 and 4258–4408 cm �1 are
associate d with the second overtone of secondary amine, while 
4516–4682 cm �1 is related to the third overtone of CAH bending 
of ACH2 group. Interval 4725–4810 cm �1 is correspond ing to 
C@O carbonyl stretch, second overtone of primary amide [48],
and 6025–6106 cm �1 is correspondi ng to the first overtone of 
NAH stretch. Interval 9928–10,000 cm �1 is attributed to the sec- 
ond overtone of NAH stretch, but other methods did not select this 
spectral region. Noticeabl y, the intervals selected by biPLS contain 
most of the intervals selected by iRF except 9928–10,000 cm �1. As 
Fig. 4. The RMSECV of the union of the top ranked intervals from 10th to the last 
(1538th) on the milk dataset. The top 165 intervals are the optimal intervals with 
the lowest RMSECV on the calibration set.



Fig. 5. The selected intervals on the milk dataset by iRF.
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a conseque nce, the results from biPLS are not better than the ones 
from iRF. The region of 9928–10,000 cm �1 is also indicated as more 
informative . As for the left four unexplained intervals, we think 
that they were likely to be overlapped with chemical bands of 
other properties such as water and fat. For example, the range of 
5026–5315 cm �1 is the absorption of water band. Therefore, inter- 
val of 5026–5315 cm �1 was most probably overlapped with water 
band completely.

Conclusion s

A novel wavelength interval selection method based on the 
framework of random frog PLS, called interval random frog, was 
proposed and investigated using two NIR datasets. The results 
show that the proposed method selects more informative intervals 
and works better than other wavelength interval selection meth- 
ods including MWPLS, iPLS, biPLS and siPLS. This method considers 
all possible spectral intervals and ranks all the intervals based on 
the absolute regression coefficient of PLS model. It can be said that 
iRF is an efficient method to be applied for spectral calibration. One 
of the drawback s of iRF method is the low reproducibi lity as a
result of random sampling . Hence, it is better to conduct many 
runs of iRF and use the average result.

The idea of considering all possible spectral intervals and using 
the ranked intervals is a new one and is useful for wavelength 
selection. For example, GA-PLS carries out variable selection based 
on the frequenc y of each variable. Therefore, we believe that it is 
worth applying it in the GA algorithm.
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