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The  proposed  method  possesses
advantages  of  RJMCMC  algorithms.
The  proposed  method  is easier  to
implement  than  RJMCMC.
Competitive  results  over  published
work  were  obtained.
Random  frog  is  computationally  very
efficient.
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a  b  s  t  r  a  c  t

The  identification  of  disease-relevant  genes  represents  a  challenge  in  microarray-based  disease  diagnosis
where the  sample  size  is  often  limited.  Among  established  methods,  reversible  jump  Markov  Chain  Monte
Carlo (RJMCMC)  methods  have  proven  to be  quite  promising  for  variable  selection.  However,  the  design
and application  of an RJMCMC  algorithm  requires,  for  example,  special  criteria  for  prior  distributions.  Also,
the simulation  from  joint  posterior  distributions  of  models  is  computationally  extensive,  and  may  even
be mathematically  intractable.  These  disadvantages  may  limit  the  applications  of  RJMCMC  algorithms.
Therefore,  the  development  of  algorithms  that  possess  the  advantages  of  RJMCMC  methods  and  are  also
ene expression-based disease
lassification
arkov Chain Monte Carlo

andom frog

efficient  and  easy  to follow  for selecting  disease-associated  genes  is  required.  Here  we  report  a RJMCMC-
like method,  called  random  frog that  possesses  the  advantages  of  RJMCMC  methods  and  is  much  easier
to  implement.  Using  the colon  and  the  estrogen  gene  expression  datasets,  we  show  that  random  frog  is
effective  in  identifying  discriminating  genes.  The  top  2 ranked  genes  for  colon  and  estrogen  are  Z50753,
U00968,  and  Y10871  at,  Z22536  at,  respectively.  (The  source  codes  with  GNU  General  Public  License
Version  2.0  are  freely  available  to  non-commercial  users  at:  http://code.google.com/p/randomfrog/.)
. Introduction

The developed microarray experiment that monitors expres-

ion levels of thousands of genes involved in different disease
henotypes, has been gaining extensive applications for cancer
lassification, and also becoming commonly used in the fields of

∗ Corresponding author. Tel.: +86 731 88830831; fax: +86 731 8830831.
E-mail address: yizeng liang@263.net (Y.-Z. Liang).

003-2670/$ – see front matter ©  2012 Published by Elsevier B.V.
ttp://dx.doi.org/10.1016/j.aca.2012.06.031
© 2012 Published by Elsevier B.V.

biomedical and clinical research [1–4]. The main goal of cancer
classification includes: predicting prognosis, proposing therapy
according to the clinical situation, advancing therapeutic studies,
etc. Thus, it is of interest for physicians and clinicians to establish
the rules for accurate tumor classification before the administration
of any treatment to the patient, in order to avoid unnecessary treat-

ment and/or propose the most appropriate therapies. Definitely,
cancer classification plays a key role in cancer treatment [1],  and
studies of gene expression data based cancer classification have
been widely reported [5–10].

dx.doi.org/10.1016/j.aca.2012.06.031
http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
http://code.google.com/p/randomfrog/
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One key point in cancer classification is to identify a small num-
er of relevant genes that can be used for accurate prediction of
he phenotype in a new individual [11]. However, the identifica-
ion of these genes is a great challenge in the context of genomic
tudy, since not only gene expression data are usually of a very high
imensionality but also the number of samples available is compar-
tively rather small. As is known, it is a “large p, small n” problem
12,13]. To our knowledge, some methods have been proposed
hat could be used to identify genes that are potentially respon-
ible for cancer classification, e.g.,  class distinction correlation [1],
upport vector machines (SVM) [14,15],  sparse logistic regression
16], entropy-based method [17] and Bayesian approaches like
eversible jump Markov Chain Monte Carlo (RJMCMC) [18,19].

Among these established methods, the RJMCMC method is in
heory a very powerful one and it has been gaining some success-
ul applications. Through the implementation of fixed-dimensional
nd trans-dimensional searching among different models, RJM-
MC  constructs a MCMC  chain in the model space in which each
odel is characterized by a model index and its associated model

arameters. The resulting MCMC  chain will converge into the joint
istribution of model indices and model-specific parameters if
he transition probability satisfies the detailed balance condition,
hich says: the transition probability that a general sate A in the

hain moves to a general state B is the same as that when A and B are
eversed. In spite of its advantages, the applications of RJMCMC are
till limited by several factors; for example, to design an effective
JMCMC algorithm, prior distributions over the number of vari-
bles and model parameters have to be appropriately assigned so
hat posterior distributions of interested parameters will be com-
utationally tractable. In addition, constructing a MCMC  chain is
sually computationally extensive. In practice, these two factors

ndeed limit the use and applications of RJMCMC.
Borrowing the merits of RJMCMC techniques and aiming to

stablish a mathematically simple and computationally efficient
ethod, here we report a RJMCMC-like algorithm called random

rog for gene selection. Like any RJMCMC method, random frog real-
zes a search in the model space through both fixed-dimensional
nd trans-dimensional moves between different models. By doing
o, a pseudo-MCMC chain can be computed and then used to cal-
ulate, for each gene, a selection probability that measures genes’
elevance, and this can be used as a gene selection criterion.
he performance of random frog was tested on two benchmark
atasets. Our results show that random frog is computationally
fficient and can single out a small number of genes that lead to
ignificant improvement in terms of prediction errors over the pre-
iously reported results.

. Theory and algorithm

.1. Reversible jump MCMC

The reversible jump MCMC  algorithm was firstly introduced by
reen [18], and since then, different versions of RJMCMC algo-

ithms have been reported [19,20]. Here we only aim to present
he algorithm in a schematic form, as described in reference [20].
he current model of Markov chain is assumed to be denoted as (k,
k), where k stands for the model index and �k refers to the cor-
esponding model parameter. Then, the RJMCMC algorithm can be
riefly described as follows:

Step 1. Propose a visit to model Mk∗ with probability J (k → k*). Here

k and k* denote different model indices.
Step 2. Generate a new model �k∗ .
Step 3. Calculate the acceptance probability of the new model as
the product of model ratio and proposal ratio.
a Acta 740 (2012) 20– 26 21

Looping these three steps generates a sample (ki, i = 1, . . .,  N) for
the model indicators and the posterior probability of the kth model
given data (X, y) can be estimated using the following formula,

P(k|X, y) = 1
L

N∑

i=1

Ik(ki) (1)

where Ik(·) = 1 if k = ki and zero otherwise.

2.2. Random frog

Borrowing the framework of reversible jump MCMC,  in the
present work we  developed the random frog algorithm. Let X, of
size n × p, denote the design matrix consisting of n samples in rows
and p variables in columns and y, the class label vector of size n × 1,
with elements equal to 1 or −1 in a binary classification case. As pre-
viously mentioned, random frog is a general strategy for variable
selection. So, for a method to build a classification model, this needs
to be specified in order to implement random frog. In the present
work, we  chose partial least squares-linear discriminant analysis
(PLS-LDA) to construct classifiers. The rationales behind our choice
were: (1) PLS-LDA is quite strong in handling highly correlated data,
such as gene expression data, and (2) a PLS-LDA model is linear and
thus easy to interpret.

Random frog is a method that works in an iterative manner. The
schematic is shown in Fig. 1. Briefly, random frog works in three
steps: (1) a variable subset V0 containing Q variables is initialized
randomly, (2) propose a candidate variable subset V* including Q*
variables based on V0, accept V* with a certain probability as V1,
and replace V0 using V1. This step is looped until N iterations are
finished. (3) Finally compute a selection probability of each variable
which can be used as a measure of variable importance.

The algorithm of random frog will be fully detailed in the fol-
lowing paragraphs.

2.2.1. Parameters and initialization of random frog
There are five tuning parameters controlling the performance of

random frog. These parameters as well as their meanings are listed
below.

(1) N: the number of iterations. This is a very important factor. It
needs to be sufficiently large to achieve convergence. According
to our experiences, N = 10,000 can often work well.

(2) Q: the number of variables contained in the initialized vari-
able set. Q can be any number of between 1 and p. In our
experiments, it was found that Q had influence on the iterative
behavior only at the beginning but had no significant effects
on the performance of random frog. Usually, a number smaller
than p, can work.

(3) �: a factor controlling the variance of a normal distribution from
which the number of variables to enter a candidate variable
subset is sampled. Details on this parameter will be given in
Section 2.2.  By default, we set � to 0.3.

(4) ω: a factor whose value should be larger than 1. Details on this
parameter will be given in Section 2.2.  By default, we  set ω to
3.

(5) �: a parameter that ranges from 0 to 1. This is the upper bound
of the probability for accepting a candidate variable subset V*
whose performance is not better than V0. By default, it is set to
0.1.
Before running the random frog, these five parameters are ini-
tialized. A variable subset V0, consisting of Q variables selected
randomly, is initialized. Denote the set containing all p variables
as V. Thus, we have V0 ⊂ V.



22 H.-D. Li et al. / Analytica Chimica Acta 740 (2012) 20– 26

Fig. 1. Flowchart of the random frog algorithm. Given an initial variable subset V0 with its cardinality denoted by |V0| = Q, a random number is generated from the normal
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istribution with mean Q and standard deviation � Q, where R is a predefined posit
y  Q*. Based on V0, a candidate variable subset V* that contains Q* variables is gene
bove  procedures until N iterations are finished.

.2.2. Probability-guided model searching in random frog
At first, a random number is generated from a normal distri-

ution Norm(Q, �Q), where Q and �Q are the mean and standard
eviation of this distribution, respectively. This random number is
ounded to its nearest integer, denoted as Q*. Q* is the number of
ariables of the candidate variable subset V*. The reason why we
hoose �Q as the standard deviation is that it can adjust the number
f variables included in a model automatically and efficiently. For
xample, given � = 0.3, if the current model includes 500 variables,
.g.  Q = 500, the dimension of the candidate model Q* can then vary
n a very wide range from Norm(500, 150), which allows for great
umps between differently dimensioned models. In contrast, if the
urrent model is low dimensional with Q = 10, Q* can only be val-
ed from the distribution Norm(10, 3), which means the change in
he number of variables is limited, allowing for the refinement of

odel dimensionality.
Once Q* is determined, the next step is to propose a candidate

ariable subset V* that contains exactly Q* variables. There are three
ossible situations:

1) If Q* = Q, let V* = V0. This is the easiest case to handle.
2) If Q* < Q, a PLS-LDA model is first built using V0 and the regres-

sion coefficient of each variable in this model is recorded
and compared. The Q − Q* variables associated with the small-
est absolute regression coefficients are removed from V0. The
remaining Q* variables form a candidate subset V*. In this case,
selective deletion of variables from V0 is realized.

3) If Q* > Q, a variable subset T with ω(Q* − Q) variables sampled
from V − V0 randomly is generated. A PLS-LDA model is estab-
lished using the combination of V0 and T. The Q* variables
with the largest absolute regression coefficients in this PLS-
LDA model are retained and collected as a candidate subset V*.
In this situation, selective deletion of variables from V0 and/or

addition of variables from T to V0 would happen.

Briefly, the use of the proposed normal distribution to control
umber of variables implicitly introduces the operation of variable
mber, e.g.  0.3. This random number is then rounded to its nearest integer, denoted
. Next, accept V* as V1 with a certain probability. Finally, let V0 = V1 and repeat the

addition and deletion, which provides the basis of model searching
in a general model space. After the candidate variable subset V* is
obtained, the next step is to determine whether V* can be accepted.
First we compute cross validated misclassification errors using V0
and V*, respectively. Denote them as Err and Err*. If Err*  ≤ Err,  accept
V* as V1. Otherwise accept V* as V1 with probability �Err/Err*.
Clearly, Err/Err*  < 1, so �Err/Err* < �. This is why  � is called the
upper bound of the probability for accepting V* as discussed
before.

Finally, V0 is updated using the variables in V1 and this iteration
is repeated until N loops are finished.

2.2.3. Compute selection probability of each variable
After N iterations, in total N variable subsets can be obtained.

Denote the frequency for the jth variable, j = 1, 2, . . .,  p, to be selected
in these N variable subsets as Nj. Then, for each variable, its selection
probability can be calculated using formula (2).

Probj = Nj

N
,  j = 1, 2, . . . , p (2)

As can be expected, the more important a variable is, the more
likely it is to be selected into these N variable subsets. So, this
selection probability can serve as a measure of variable impor-
tance and, therefore, can be used as an index for variable selection.
Also, building on the analysis of a large number of sub-models
sampled from the model space, random frog can be viewed as
an implementation of model population analysis (MPA), which
is a general framework for designing data analysis algorithms
[21–24].

By the way, one may  want to determine the optimal number
of variables that should be included in a classification model. One
way is to build a series of PLS models with increasing number of

variables until a predefined maximal number is achieved followed
by computing the classification error of each model using cross val-
idation. The optimal number of variables can then be chosen as the
one that is associated with the lowest error.
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Table 1
The top ranked 15 genes for the colon cancer data.

ID Gene ID Gene description

1 Z50753 H. sapiens mRNA for GCAP II/uroguanylin
precursora,b

2 U00968 Sterol regulatory element binding protein 1
(human)

3  H20709 Myosin light chain alkali, smooth-muscle isoform
(human)b

4 R88740 ATP synthase coupling factor 6, mitochondrial
precursor (human)b

5 T57619 40S ribosomal protein S6 (Nicotiana tabacum)
6 H64807 Placental folate transporter (Homo sapiens)b

7 K03474 Human Mullerian inhibiting substance gene,
complete cds

8  X93510 H. sapiens mRNA for 37 kDa LIM domain protein
9 T57882 Myosin heavy chain, nonmuscle Type A (Homo

sapiens)b

10 H08393 Collagen alpha 2(XI) chain (Homo sapiens)a,b

11 R87126 Myosin heavy chain, nonmuscle (Gallus gallus)a,b

12 T41207 Come operon protein 3 (Bacillus subtilis)
13  J02854 Myosin regulator light chain 2, smooth muscle

isoform (human)a,b

14 L06895 Homo sapiens antagonizer of myc  transcriptional
activity (Mad) mRNA, complete cds

15 H16096 Mitochondrial processing protease beta subunit
precursor (Rattus norvegicus)
ig. 2. The selection probability of each gene averaged over 20 runs of random frog
or  the colon data at Q = 50 (A) and estrogen data (B) at Q = 100.

. Results and discussion

.1. Colon data

This dataset contains the gene expression profiles measured
n 40 tumor and 22 normal colon tissues for 6500 human genes
btained by applying the Affymetrix gene chip technology. A
creening of 2000 genes with the highest minimal intensity across
he samples has been made by Alon et al. [25] and is freely avail-
ble at http://microarray.princeton.edu/oncology/. The analysis of
his dataset has been carried out in several reported studies, see
eferences [26–28].

As discussed before, there are five parameters, N, Q, �, ω and �,
hat need to be set before running random frog. As can be expected,
he larger the N is, the more likely the random frog method is to
dentify the best variable subset. However, a too large N value will
esult in a high computational cost. Considering both performances
nd computational cost, N was set to 10,000 in the present study.
ith respect to Q, a series of Q values, i.e.  [2, 10, 30, 50, 100], were

ested, from which an optimal Q value is chosen using cross valida-
ion. The other three parameters, �, ω and �, do not have significant
nfluences on the results and were set to 3, 0.3 and 0.1, respectively,
y default. Before running random frog to perform gene selection,
ach gene was standardized to have zero mean and unit variance.

As can be expected, the selection probability of genes cannot be
eproduced exactly as a consequence of the embedded Monte Carlo
trategy in random frog. To reduce the influence of this random
actor, we therefore run random frog 20 times at each Q value and
ake the average over these 20 runs as the criterion for assessing
he importance of each gene. For illustration, the average selec-
ion probability at Q = 50 is shown in Fig. 2A. From this plot, it
an be found that only a small portion of genes exhibit a rela-
ively high selection probability, whereas the selection probability
f most genes is very low, even close to zero. This finding might
e an indication that the number of disease-related genes is small,
hus providing computational evidence supporting the necessity of
ene selection for disease classification.

To build a model that is predictive of clinical outcome, a sub-
et of genes needs to be selected. For each Q value, we  first rank

ll the genes based on their selection probability. Then, to compre-
ensively investigate the influence of the number of genes included

n the model as well as to seek an optimal number of genes, nine
ene sets, which consist of the highest ranked 10, 25, 50, 75, 100
a Ben-Dor et al. [26].
b Yang and Song [30].

and 200, were considered here. To make our results comparable
with published studies, we  first used leave-one-out cross validation
(LOOCV) to evaluate performances of these 6 gene sets. However,
it is known that LOOCV usually gives over-optimistic results. So
the repeated double Cross Validation (rdCV) developed by Var-
muza et al. [29] was  also employed for performance evaluation
because this method can give much better estimation of predic-
tion errors. The misclassification errors using both LOOCV and rdCV
at different Q values are displayed in Fig. 3A and B respectively.
As can be seen, these misclassification error curves with differ-
ent Q values show the similar changing trend, suggesting that the
number of genes in the initialized subset does not affect much
the predictive performances. For both LOOCV and rdCV, these mis-
classification error curves first decrease and then keep stable or
go up slightly with increased genes, implying gene selection can
greatly improve classification accuracies of a predictive model. It is
also found that prediction errors from rdCV are consistently higher
than LOOCV, confirming that rdCV is a better estimator of model
performances.

By comparison, the optimal Q value was  chosen to be 50 in terms
of classification accuracies. The 15 most significant genes ranked by
the selection probability at Q = 50 are presented in Table 1. Eight of
them were found to be reported previously by Ben-Dor et al. [26]
and Yang and Song [30]. The highest ranked gene is uroguanylin
precursor Z50753. In the work of Notterman et al. [31], it was  shown
that a reduction of uroguanylin might be an indication of colon
tumors. In addition, it was  reported by Shailubhai et al. [32] that
treatment using uroguanylin exhibits a therapeutic effect to the
reduction in pre-cancerous colon ploys. The gene R87126 (myosin
heavy chain, non-muscle) is also of interest. Yam et al. [33] reported
that its isoform B can work as a tumor suppressor and is also known
for its role in the cytoskeletal network. Indeed, it is very challeng-
ing to perform biological validation of each gene. However, these
literature reports provide evidence showing the meaningfulness of
the identified significant genes.
For comparison, predictive results of classification models
reported in the literature are summarized here. Furey et al. [14]
misclassified 6 samples using SVM based on LOOCV, leading to a
prediction error = 0.097. In Nguyen and Rocke [34], their best result

http://microarray.princeton.edu/oncology/


24 H.-D. Li et al. / Analytica Chimica Acta 740 (2012) 20– 26

F e num
a

w
c
W
c
(
e
S
i
a
L
s

m
w
c
t
a
t
m
b
p
d
g
i
o
h
h
o
s
g

3

e
t
a
l

ig. 3. The misclassification errors resulting from LOOCV as well as rdCV against th
nd  estrogen (C and D) data, respectively.

as obtained using PLS including 50 or 100 genes with the mis-
lassification error 0.065. Using the top ranked 200 genes based on

ilcoxon rank test, Dettling and Buhlmann [27] achieves the mis-
lassification errors as shown: 0.145 (LogitBoost, optimal), 0.177
Adaboost), 0.177 (1-nearest-neighbor) and 0.145 (CART). Pochet
t al. [15] shows a mean classification error 0.180 by employing
VM-based methods. In the work of Ma  and Huang [4],  the regular-
zed ROC method based mean misclassification error is 0.140 with

 standard deviation 0.070. In contrast, the LOOCV error of PLS-
DA models using genes selected by random frog achieves zero,
uggesting significant improvement over the reported results.

In addition, we also compared our method with another three
ethods: t-statistic, mutual information and the sequential for-
ard selection (SFS) motivated method [35]. We  employed rdCV for

omparison. The rdCV misclassification errors resulting from these
hree methods as well as the random frog on 6 gene subsets with

 maximum of 200 genes allowed are presented in Table 2. Clearly,
he prediction errors of random frog are lower than the other three

ethods. Furthermore, to examine whether selected genes could
etter reflect between-class pattern differences, a principal com-
onent analysis (PCA) model was constructed on both the original
ata and the reduced data containing only the highest ranked 25
enes, respectively. Comparing the scores plots in Fig. 4A and B,
t can be found that a much better separation was achieved using
nly selected genes, indicating that these genes associated with
igh selection probability have a predictive value. Summing up, we
ave reasons to say that the random frog is very powerful in terms
f lower prediction errors as well as a smaller number of gene sub-
ets, and therefore can be considered as a promising alternative for
ene selection.

.2. Estrogen data

This dataset was firstly presented by West et al. [36] and Spang

t al. [37], consisting of the gene expression values of 49 breast
umor samples on 7129 genes. Out of these samples, 25 are LN+
nd the remaining 24 are LN−.  After pretreating this data, fol-
owing the same methods described in Ma  and Huang [4],  3333
ber of genes included in a PLS-LDA model at different Q values for colon (A and B)

genes in total were kept. The raw data is freely available at
http://mgm.duke.edu/genome/dna micro/work/.

For the tuning parameters, N, Q, �, ω and �, we used the same
setting as for the colon data. N was  set to 10,000, a series of Q val-
ues, i.e.  [2, 10, 30, 50, 100] were tested, and default values of �, ω
and � used. Before analysis using random frog, each gene was stan-
dardized to have zero mean and unit variance. By analogy with the
analysis of colon data, the selection probability averaged over 20
runs of random frog was used to assess the importance of each gene.
Taking Q = 100 as an example, the average selection probability is
shown in Fig. 2B. For this dataset, we also found that only a small
number of genes displayed a relatively high selection probability,
again, suggesting that most of these measured genes are not rele-
vant to the disease under investigation and therefore the necessity
of gene selection.

Similarly, to study the influence of the number of genes included
in PLS-LDA classifiers as well as to determine an optimal number
of genes, twelve gene sets, which consist of the highest ranked
10, 25, 50, 75, 100 and 200 genes, were considered. The resulting
LOOCV and rdCV misclassification errors corresponding to different
Q values are shown in Fig. 3C and D as a function of the number of
genes. The similar changing trend of these misclassification error
curves, again, provides evidences that the initialization of the ran-
dom frog algorithm has little effect on the performance. Of note,
only 10 genes identified with Q = 100 achieved a misclassification
error zero, showing the great potential of random frog for gene
selection of high dimensional data. By comparison, the optimal Q
value for this data was chosen to be 100 since Q = 100 lead to the
minimum error with the least number of genes. By analogy, the 15
most significant genes ranked by the selection probability at Q = 100
are presented in Table 3. To our knowledge, these genes have not
been reported to be associated with the lymph nodal status. It could
be interesting to further investigate whether and how these genes
may  be interlinked to breast cancer.

For this dataset, Dettling and Buhlmann [27] yields classifi-

cation errors of 0.020 (LogitBoost, optimal), 0.06 (AdaBoost, 100
iterations) and 0.040 (CART) using 100 genes. Using a regularized
ROC method, Ma  and Huang [4] achieved a mean misclassification
error of 0.060 with a 0.070 standard deviation. Compared to these

http://mgm.duke.edu/genome/dna_micro/work/


H.-D. Li et al. / Analytica Chimica Acta 740 (2012) 20– 26 25

Table  2
Comparison of the repeated double cross validated misclassification errors using different variable selection methods.

10 25 50 75 100 200

Colon
A t-Statistic 15.86 13.71 14.71 13.14 13.57 16.43
B Mutual  information 11.57 11.71 12.71 14.71 14.86 16.43
C  SFS-motivated method 14.57 7.71 3.14 0.57 1.14 2.29
D Random frog 8.86 1.71 0.00 0.57 0.29 2.29

Estrogen
A  t-Statistic 4.00 7.60 8.80 9.20 6.80 6.80
B  Mutual information 14.40 14.40 

C SFS-motivated method 14.00 2.80 

D  Random frog 6.80 0.00 

Table 3
The top ranked 15 genes for the estrogen data.

ID Gene ID Gene description

1 Y10871 at H. sapiens twist gene
2  Z22536 at Homo sapiens ALK-4 mRNA, complete CDS
3 AFFX-CreX-3 st Bacteriophage P1 cre recombinase protein
4  AFFX-BioB-3 at E. coli bioB gene biotin synthetase
5  HG2280-HT2376 at d-Amino-acid oxidase
6  J02982 f at Human glycophorin B mRNA, complete cds
7  M13686 s at Human pulmonary surfactant-associated

protein mRNA, complete cds
8  AFFX-BioB-M at E. coli bioB gene biotin synthetase
9  U88898 r at Human endogenous retroviral H

protease/integrase-derived ORF1 mRNA
10  L04733 at Homo sapiens kinesin light chain mRNA,

complete cds
11 AB002318 at Human mRNA for KIAA0320 gene, partial cds
12 X66087 at H. sapiens a-myb mRNA
13 U37408 at Human CtBP mRNA, complete cds
14 X72012 at H. sapiens end mRNA for endoglin

F
D

15 M61916 at Human laminin B1 chain mRNA, complete cds

ig. 4. Plot A and C shows the principal component plot before and after gene selection o
,  respectively.
16.00 16.40 14.40 13.20
0.80 0.00 0.00 0.00
0.00 0.00 0.00 0.00

results, the proposed random frog method performs the best in
terms of misclassification errors. We  also used rdCV to compare our
method with t-statistic, mutual information and the sequential for-
ward selection (SFS) motivated method [35]. The results are given
in Table 2. The best performance is also achieved by random frog.
Furthermore, we  constructed principal component analysis (PCA)
models using the original data and the reduced data with the high-
est ranked 25 genes included. The scores plots are shown in Fig. 4C
and D, respectively. Of notice, the two classes of samples based on
all 3333 genes completely overlap with each other with no sepa-
ration observed. In contrast, full separation was  achieved between
these two  phenotypes of samples when using only 25 genes identi-
fied by random frog, implying that these 25 genes might be possible
biomarkers that are of diagnostic value when working collectively.
To conclude, the random frog method has been shown to be of great
power for variable selection of high dimensional data.
3.3. Computational time

For both the colon and estrogen data, one run of random frog
with 10,000 iterations takes only around 6.2 min in MATLAB 7.1

f the colon data, respectively. The plots for the estrogen data are given in Plot B and
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n a Mac  with Intel core 2 1.6 GHz CPU and 2 G RAM. As a rough
eference, in Yang and Song’s work [30], 258 min  are needed to run

 MCMC  chain with 60,000 iterations for the colon data in a PC with
ntel Core2 1.86 GHz CPU 1 GB RAM.

. Conclusions

Identifying a small subset of genes that can be used for accurate
rediction of the clinical outcome of a new individual is of great
alue. However, the task of searching such a subset out of thou-
ands of genes represents a great challenge. In the present work,

 RJMCMC-like method, called random frog, was developed, con-
ucting a search in a model space through the realization of both
xed-dimensional and trans-dimensional jumps between different
odels. The advantage of random frog is that no demanding math-

matical formulation is needed and no prior distributions need to
e specified like in formal RJMCMC methods, which makes it eas-

er to implement and computationally very efficient. Experimental
esults on two freely available microarray datasets showed that
andom frog is capable of identifying a small number of genes
ith discriminating power and that the classifiers established using

hese genes outperform those previously reported in terms of clas-
ification accuracies. The proposed random frog method is expected
o gain more applications in the future.
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